Algorithms for Modular Elliptic Curves
J. E. Cremona
Contents of Second Edition
- Introduction
- Modular symbol algorithms
- Modular Symbols and Homology
- The upper half-plane, the modular group and cusp forms
- The duality between cusp forms and homology
- Real structure
- Modular symbol formalism
- Rational structure and the Manin-Drinfeld Theorem
- Triangulations and homology
- M-symbols and $\Gamma_0(N)$
- Conversion between modular symbols and M-symbols
- Action of Hecke and other operators
- Working in $H^+(N)$
- Modular forms and modular elliptic curves
- Splitting off one-dimensional eigenspaces
- $L(f,s)$ and the evaluation of $L(f,1)/\period(f)$
- Computing Fourier coefficients
- Computing periods I
- Computing periods II: Indirect method
- Computing periods III: Evaluation of the sums
- Computing $L^{(r)}(f,1)$
- Obtaining equations for the curves
- Computing the degree of a modular parametrization
- Modular Parametrizations
- Coset representatives and Fundamental Domains
- Implementation for $\Gamma_0(N)$
Appendix to Chapter II. Examples
- Example 1. N=11
- Example 2. N=33
- Example 3. N=37
- Example 4. N=49
- Elliptic curve algorithms
- Terminology and notation
- The Kraus--Laska--Connell algorithm and Tate's algorithm
- The Mordell--Weil group I: finding torsion points
- Heights and the height pairing
- The Mordell--Weil group II: generators
- The Mordell--Weil group III: the rank
- The period lattice
- Finding isogenous curves
- Twists and complex multiplication
- The tables
- Elliptic curves
- Mordell--Weil generators
- Hecke eigenvalues
- Birch--Swinnerton-Dyer data
- Parametrization degrees
- Bibliography
Back to Algorithms for Modular Elliptic Curves home page.