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1 Introduction

Let E be an elliptic curve de�ned over Q. Our overall goal is to �nd explicitly

the Mordell-Weil group E(Q), its rank r and a Z-basis. In place of the latter

we are often satis�ed with a basis for E(Q)=mE(Q ) for some integer m � 2;

computing this quotient is usually known as \doing an m-descent" on E.

In this talk we will �rst give some generalities on descents, before specializing

to the well-known case of descent via 2-isogeny. This will be called the �rst

descent. While often conclusive with no further work, there are curves for which

this �rst descent proves inconclusive, in the sense that we obtain homogeneous

spaces (de�ned below) for which we cannot decide whether they have rational

points. Higher descents attempt to settle this question, and we will go on to

describe in some detail how to carry out a second descent.

Finally we give a numerical example to illustrate the method.

The terminology of descents is by now classical, going back to a series of

papers by Cassels (summarized in [3]), and Birch and Swinnerton-Dyer ([1] and

[2]). The second descent which we will describe for general curves was used

in [2] to study curves of the form y

2

= x

3

� Dx. It has been implemented

simultaneously (but independently) by the author in C++ as part of his program

mwrank, and also by D. Rusin and I. Connell in Maple, as part of Connell's

package apecs.

A longer version of this article is in preparation [6].

2 The First Descent

Since E(Q) is a �nitely-generated abelian group, we can divide our task into the

following subtasks: �nding the (�nite) torsion subgroup, �nding the rank r, usu-

ally by �nding r independent points in E(Q), by �nding a basis forE(Q)=mE(Q )

for some integer m � 2, and �nally �nding a Z-basis for E(Q) itself. The �rst

of these steps is easy (see [5, Section 3.5]); here we will not be concerned with

the last step, and wish to determine E(Q)=mE(Q ) for some m. The only case

worked out in detail and implemented in practice for general elliptic curves is

the case m = 2. Hence for the purposes of this talk our more modest goal is

to compute E(Q)=2E(Q ) explicitly, thus obtaining both the rank r and r inde-

pendent rational points on E which generate a subgroup of �nite index in the

Mordell-Weil group E(Q). This process is known as \doing a 2-descent".

1



2.1 Descent via isogeny

Let ' : E

0

�! E be a nonzero isogeny of degree m between two elliptic curves E

0

and E, with both curves and the isogeny de�ned over Q. \Doing a '-descent" on

E means determining the quotient E(Q)='(E

0

(Q)). We have the exact sequence

0 �! E

0

['] ,! E

0

'

��! E �! 0;

where E

0

['] denotes the kernel of ', which is �nite of order m. Applying G

Q

-

cohomology, where G

Q

= Gal(Q=Q), we obtain the injection

0 �! E(Q)='(E

0

(Q))

�

�! H

1

(G

Q

; E

0

[']): (1)

For this to be useful computationally, we must represent elements of the group

H

1

(G

Q

; E

0

[']) in a concrete way, and determine which come from rational points

on E. Each element gives rise to a so-called '-covering of E: this consists of

a curve C, isomorphic to E

0

over Q (via �, say), and a map � : C �! E de�ned

over Q and of degree m such that the following diagram commutes:

E

0

E

-

'

C

6

�

�

�

�

�

��

(2)

For each such '-covering such that C(Q) 6= ;, the image of C(Q) under � is

a complete coset of '(E

0

(Q)) in E(Q). So if we can �nd all such '-coverings

explicitly and determine which have rational points, we will be able to compute

the order of E(Q)='(E

0

(Q)). Repeating the process with the dual isogeny '

0

: E

�! E

0

, we can determine the order of E

0

(Q)='

0

(E(Q)), and hence determine

the rank of E(Q). (See [8, Chapter X, Remark 4.7] for details.)

The covering curves C are also known as homogeneous spaces, since they

can be given the structure of principal homogeneous spaces for E, via (2).

The '-Selmer group S

(')

(E

0

=Q) is the subgroup of H

1

(G

Q

; E

0

[']) consisting

of elements represented by homogeneous spaces C which have points every-

where locally, i.e. for which C(Q

p

) 6= ; for all primes p (including Q

1

= R).

This group is �nite and e�ectively computable (for suitable '), and contains

E(Q)='(E

0

(Q)), giving the exact sequence

0 �! E(Q)='(E

0

(Q)) ,! S

(')

(E

0

=Q) �!X(E

0

=Q)['] �! 0

whereX(E

0

=Q) is the Tate-Shafarevich group of E

0

over Q.

Theoretically, then, it is the possible existence of non-trivial elements of

X(E

0

=Q) which provides the obstacle to the '-descent, since if such elements

exist then we will encounter homogeneous spaces which are everywhere locally

soluble (ELS) but which contain no global rational point. However, an obstacle

which can also arise in practice is that some homogeneous space which does

possess rational points may not have any small points (in the sense that the

naive or Weil height of the coordinates is small), so that we may be unable to

�nd rational points even when they exist.

Performing a second descent can help circumvent both these obstacles, either

by producing large rational points as the images of small points on further
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curves, which we call descendants of C, or by proving that no such descendants

exist. We give some explicit examples of this below, together with an example

where we �nd a further obstacle, this time to the second descent: C may have

ELS descendants on none of which are we able to �nd rational points. In such

a case, a third descent would be necessary, but it is not clear how to do this in

general.

One can also use '-coverings to �nd rational points on E, given explicit

equations for C and �. Since � has degree m � 2, rational points on C will have

smaller height than rational points on E itself, and so should be easier to �nd.

It might appear, then, that it would be best to use an isogeny ' of large degree;

however, the only isogenies for which a well worked out theory exists (in a form

suitable for implementation for general curves) are the multiplication by 2 map

(denoted [2]), of degree 4, and 2-isogenies (of degree 2).

Taking ' = [2] is a practical possibility for all curves. In this case, the curves

C have equations for the form y

2

= g(x) where g(x) 2 Z[x] is a polynomial of

degree 4. There are e�cient procedures for �nding all such 2-coverings C, though

this is time-consuming when the discriminant � of E is large. See [5, Section

3.6] for details of this 2-descent process, which is implemented in our program

mrank. A second descent then involves considering 4-coverings. The theory of

these is currently under development: see [9] for a recent account, and [4] for a

method of determining whether a given 2-descent has descendants.

When E has a rational point of order 2, there is a 2-isogeny de�ned over Q

which we may use to do a descent via 2-isogeny. Now the second descent curves

are 2-coverings, which we can determine explicitly.

2.2 Descent via 2-isogeny

Let E be an elliptic curve de�ned over Q with a rational point of order 2. Then

there is an isogenous curve E

0

, also de�ned over Q, and dual 2-isogenies ' : E

0

�! E and '

0

: E �! E

0

, de�ned over Q, and we can use descent to determine

both E(Q)='(E

0

(Q)) and E

0

(Q)='

0

(E(Q)), and hence E(Q)=2E(Q ). Explicitly,

we can choose coordinates so that E and E

0

have equations of the form

E : y

2

= x(x

2

+ cx+ d) (3)

E

0

: y

2

= x(x

2

+ c

0

x+ d

0

) (4)

where c; d; c

0

; d

0

are integers related by c

0

= �2c, d

0

= c

2

� 4d, and dd

0

6= 0. The

kernels of ' and '

0

are generated by the points (0; 0) on E

0

and E respectively.

The connecting map � in (1) now maps E(Q)='(E

0

(Q)) to

H

1

(G

Q

; E

0

[']) = Hom(G

Q

; f�1g) ' Q

�

=(Q

�

)

2

;

and is given by mapping P = (x; y) 2 E(Q) to x (mod (Q

�

)

2

) (if x 6= 0) and

(0; 0) to d (mod (Q

�

)

2

). Moreover, the image is contained in the �nite subgroup

of Q

�

=(Q

�

)

2

generated by the divisors of d. For each factorization d = d

1

d

2

with

d

1

; d

2

2 Z one has the homogeneous space

C

d

1

: v

2

= d

1

u

4

+ cu

2

+ d

2

; (5)

which is a '-covering of E with associated map � : C

d

1

�! E given by �((u; v)) =

(d

1

u

2

; d

1

uv).
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Hence the algorithmDescent via 2-isogeny may be summarized as follows,

given a curve with a rational point of order 2:

1. Transform the equation of the given curve into the form (3), mapping the

given point of order 2 to (0; 0);

2. For each square-free divisor d

1

of d, determine whether C

d

1

has rational

points;

3. The points �(P ) for P 2 C

d

1

generate E(Q)='(E

0

(Q));

4. Repeat with E

0

to �nd E

0

(Q)='(E(Q )), and so determine E(Q)=2E(Q ).

In step 2, we will �rst determine the subgroup of square-free divisors d

1

of d

such that C

d

1

is ELS (hence determining the Selmer group S

(')

(E

0

=Q)), and

then proceed to search for rational points on these C

d

1

, remembering that those

which have rational points again form a subgroup. If we fail to �nd a rational

point on some ELS curve C

d

1

, there are two possibilities:

either C

d

1

has rational points, but they are too large to have been found in the

search;

or C

d

1

has no rational points.

To distinguish between these, we now carry out the second descent.

3 The Second Descent

3.1 Theoretical background

We continue with the notation of the previous section. Given a '-covering C of

the elliptic curve E as in (2), we attempt to extend it to a 2-covering D so that

we have a larger commutative diagram

D C

-

�

E E

0
-

'

0

6 6

E

-

'

�

�

�

�

��

(6)

Both vertical maps are isomorphism de�ned over Q ; the other maps are all of

degree 2 and de�ned over Q. In general there will be several inequivalent ways

of doing this for a given C, but the number is �nite. We call the homogeneous

spaces D descendants of C. If one succeeds in �nding a single rational point on

just one descendant, then the image of this point under � will give the desired

point on C, and hence (via �) a rational point on E itself. In principal, �nding

points on the descendants should be easier than on the �rst descent curves, since

they will have smaller height, approximately by a factor of 2 (see examples in

section 4 below).

On the other hand, it may happen that an ELS �rst descent curve C may

have no ELS descendants. In this case, C certainly has no rational points; it
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represents an element of the Selmer group S

(')

(E

0

=Q) which is not the image of

an element of S

(2)

(E=Q), and so represents a non-trivial element ofX(E

0

=Q).

The situation is illustrated by the following commutative diagram:

-

0 0

?

-

0 0

?

-

0 0

? ?

0

-

0

-

K

-

K

?

�

S

('

0

)

(E=Q) S

(2)

(E=Q)

-

E

0

(Q)='

0

(E(Q)) E(Q)=2E(Q)

'

?

�

S

(')

(E

0

=Q)

-

E(Q)='(E

0

(Q))

?

�

0

-

?

0

-

?

X(E=Q)['

0

] X(E=Q)[2]

-

?

X(E

0

=Q)[']

-

'

0

? ?

0 0

?

0 0

'

0

? ?

In this diagram, the group K has order 2, unless d

0

is a square in which case it

is trivial. The ELS �rst descent curves C represent elements of S

(')

(E

0

=Q), and

their ELS descendants (if they exist) represent their preimages in S

(2)

(E=Q).

Of course it is still possible to have descendants which are ELS but with no

rational point; this will happen if C represents an element ofX(E

0

=Q)['] which

is the image under '

0

of an element ofX(E=Q)[2]. So the obstruction has been

reduced from the group X(E

0

=Q)['] to its subgroup '

0

(X(E=Q)[2]). If ELS

descendants do exist, they form a coset of S

('

0

)

(E=Q)=K in S

(2)

(E=Q), so are

parametrized by the �rst descents on the isogenous curve E

0

; this will be made

explicit below.

This is a sketch of the theory behind the second descent algorithm. Now we

explain how to carry out the second descent in practice.

3.2 The second descent in practice

Our starting point is a curve C given by an (a�ne) equation of the form (5),

where d

1

; c; d

2

2 Z, d = d

1

d

2

6= 0, d

0

= c

2

� 4d 6= 0, and we desire either to

�nd a rational point on C or show that no such point exists. We may assume

that d

1

is non-square (otherwise C represents the trivial class) so that C has no

rational points at in�nity, and we seek a rational solution (u; v) to (5). We also

assume that C is ELS, so that (5) has real solutions and p-adic solutions for all

primes p.

3.2.1 Step 1: solving the conic

Let C

0

be the curve

C

0

: Y

2

= d

1

X

2

+ cXZ + d

2

Z

2

; (7)

which is a conic (curve of genus 0). There is an obvious map C �! C

0

, and

rational points on C correspond to rational points on C

0

such that X=Z is a

square. Since C is ELS, so is C

0

, and hence by the Hasse principle, C

0

has a

rational point P

0

= (X

0

: Y

0

: Z

0

) 2 P

2

(Q). Our �rst step is to �nd such a point

P

0

, so we need as a sub-algorithm an e�cient way of solving an equation such

as (7).
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3.2.2 Step 2: parametrizing the conic

Given one solution P

0

of (7) it is simple to parametrize all solutions:

X = q

1

(�; �); Y = q

2

(�; �); Z = q

3

(�; �) (8)

where the q

i

are quadratic polynomials with integer coe�cients, which determine

a birational map.

� : P

1

(Q) �! C

0

(Q)

(� : �) 7! (q

1

(�; �) : q

2

(�; �) : q

3

(�; �)):

It will be important to keep this parametrization as simple as possible; we can

arrange that q

1

and q

3

have discriminants 16d

2

and 16d

1

respectively, with

resultant Res

u

(q

1

(u; 1); q

3

(u; 1)) = 16d

0

, all independent of P

0

.

3.2.3 Step 3: parametrizing the set of descendants

For �(�; �) to give a point in C(Q) and not just on C

0

(Q), we require

X

Z

=

q

1

(�; �)

q

3

(�; �)

= square.

Hence we require a solution in integers �; �; s; t to the equations

q

1

(�; �) = d

3

s

2

(9)

q

3

(�; �) = d

3

t

2

(10)

where d

3

is a square-free divisor of the resultant 16d

0

. Each of the �nite number

of possible d

3

for which the equations (9), (10) are soluble (separately) will give

rise to a descendant curve D. The following steps are now carried out for each

such d

3

.

Note that these d

3

, which form a group H

0

modulo squares, are precisely

the integers which parametrize the �rst descent curves C

0

d

3

for the curve E

0

.

Assuming that we have already carried out the �rst descent on E

0

, we will have

already identi�ed a subgroup H

1

of H

0

consisting of those d

3

for which C

0

d

3

is

ELS (so H

1

is isomorphic to the Selmer group S

('

0

)

(E=Q)). The set of values

of d

3

which give ELS descendants of our �rst descent curve C is either empty, or

one complete coset of H

1

in H

0

. We can use this to make the algorithm more

e�cient, as in looking for descendants, we do not need to test all d

3

2 H

0

, but

only one in each H

1

-coset. If none of the cosets gives rise to an ELS descendant

(see the later steps for how to determine this) then we will have successfully

proved that C(Q) = ;.

Suppose now that there is an ELS descendant D coming from one value of

d

3

. If we �nd a rational point on D, then we map it to a rational point on

C, and again we are successful. If we fail to �nd a rational point on D, then

we loop through the rest of the coset d

3

H

1

, construct each of the other ELS

descendants, and search for rational points on each until we �nd one (in which

case we can exit from the loop). Finally, if we fail to �nd rational points on any

of the ELS descendants, we admit defeat, and either restart the algorithm with

a larger search bound for rational points on the descendants, or attempt a third

descent.

We now turn to the construction of the descendant curves themselves, for a

�xed value of d

3

in (9), (10).
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3.2.4 Step 4: constructing the descendants

To solve (9), (10) we �rst verify that each is soluble separately, using the stan-

dard criterion of Legendre. If either fails, we continue to the next value of d

3

.

Assuming both are soluble, we �nd a solution to (9) using the same algorithm

as in Step 1, and hence parametrize the solutions:

� = Q

1

(�; �); � = Q

3

(�; �); and s = Q

2

(�; �) (11)

where the Q

j

are integer quadratics such that

q

1

(Q

1

(�; �); Q

3

(�; �)) = d

3

Q

2

(�; �)

2

(12)

identically in � and �. Substituting in (10) we obtain the equation

D : g(�; �) = d

3

t

2

(13)

where g(�; �) is the quartic q

3

(Q

1

(�; �); Q

3

(�; �)). We check that D is ELS,

using the algorithm in [5] or Siksek's improvement for large primes (see [9]).

Now D is the required descendant, which is a 2-covering of E. Equations

(11) and (8) give an explicit rational map from a rational point (�; �; t) on D

via (�; �; s) = (Q

1

(�; �); Q

3

(�; �); Q

2

(�; �)) to (X;Y; Z) = (q

1

(�; �); q

3

(�; �))

on C

0

with X=Z square, and hence to a rational point (u; v) =

�

s

t

;

Y

d

3

t

2

�

=

�

Q

2

(�;�)

t

;

q

2

(Q

1

(�;�);Q

3

(�;�))

d

3

t

2

�

on the �rst descent curve C.

3.2.5 Step 5: simplifying the descendants

Before we can go about searching for a rational point on the descendant curve

D, it is essential to simplify its equation, replacing the quartic g(�; �) with an

equivalent one (de�ning the same curve D up to birational isomorphism), since

the preceding steps will usually lead to quartics with huge integer coe�cients.

This simpli�cation is a major part of our algorithm, and is essential for the

algorithm to be practical. It takes place in two stages, which we call minimizing

and reducing the quartic. The minimization stage replaces g by a projectively

equivalent integer quartic g

�

whose invariants I

�

, J

�

are of the form I

�

=

w

�4

I(g), J

�

= w

�4

I(g), where w 2 Z is as large as possible. Our algorithm

for this, which is in some respects a quartic analogue of Tate's algorithm for

reducing elliptic curves, is based on ideas from Serf's thesis [7] which in turn

follow [1]. Secondly, the reduction stage uses a unimodular transformation to

reduce the size of the coe�cients of g

�

(while keeping I and J unchanged). Here

we use a reduction theory for quartics similar to that in [1] (though slightly

improved in the case of negative discriminant).

Finally, we use a sieve-assisted search to look for rational points on the

transformed equation (13), as described in [5, Section 3.6].

Our algorithms for minimizing and reducing quartics will be described else-

where. These, and the e�cient algorithm for �nding a small point on a conic

(which we use to solve both (7) and (9)), are the crucial basic number-theoretical

algorithms without which the second descent procedure described here could not

be made to work e�ectively in practice.
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4 Example

Rusin was interested in the elliptic curve E with standard Weierstrass coe�-

cients [a

1

; a

2

; a

3

; a

4

; a

6

] = [0;�1; 0;�1250000000083;�10000000000088]. Using

the point (�8; 0) of order 2 this can be put in the form (3) with c = �25 and

d = 3

2

� 5

3

� 11 � 41 � 271 � 9091. The 128 square-free divisors d

1

of d give 32

ELS �rst descent curves C

d

1

(generated by d

1

= d and d

1

= �1, 55 = 5 � 11,

451 = 11 � 41 and 11111 = 41 � 271). Here C

d

comes from the rational 2-torsion

point on E and so has a trivial rational point.

A simple search �nds the rational point (u; v) = (20; 26565) on C

�1355

, which

maps to the point P

1

= (�542000;�719911500) on E. There is also a small

rational point on C

4100041

, with u = 3=4, (which we can ignore since 4100041 �

�1355d modulo squares), but none on the 28 other non-trivial �rst descent

curves C

d

1

. (In fact we do not search all 28, since we only look at one in each

coset of the subgroup which is known to have rational points.) So the '-Selmer

rank of E is 5, of which at least 2 comes from rational points on E.

Similarly, the �rst descent on E

0

shows that its '

0

-Selmer rank is 2, generated

by d

0

and 5, but we do not �nd rational points except the trivial one on C

0

d

0

coming from the rational 2-torsion on E

0

.

Hence we �nd from the �rst descent that the rank is between 1 (= 2+1�2)

and 5 (= 5+2�2). Rerunning the �rst descent with higher (reasonable) search

bounds does not change this estimate.

When we do the second descent, two things happen: we increase the lower

bound, by successfully �nding more rational points on certain �rst descent

curves, and we also decrease the upper bound, by successfully proving that

certain others have no rational points. Speci�cally, we �nd rational points on

C

�55

and on C

0

5

. This shows that the number of �rst '-descent curves C

d

1

with

rational points is at least 8, and that all 4 �rst '

0

-descent curves have points.

Secondly, the remaining 24 curves C

d

1

have no ELS descendants, so do not

have rational points. This proves unconditionally that E(Q) has rank 3 (as

does E

0

(Q)), that the 2-rank ofX(E=Q) is 0, while the 2-rank ofX(E

0

=Q) is

exactly 2.

We also obtain three explicit points on E(Q) which generate a subgroup of

�nite index, namely P

1

= (�542000;�719911500) (as above) and

P

2

=

�

�12123886930631252087108

111060601

2

;

�723566398176234298022167437626250

111060601

3

�

;

P

3

=

�

1651941110876982226534320892

10864887323

2

;

66926997509744679365893292879170097213082

10864887323

3

�

:

These points have approximate canonical heights 8:9, 46:5 and 61:6 respectively.

The point P

2

comes from a descendant D of C

�55

. The parametrization of

the associated conic C

0

is given by

q

1

(�; �) = 1104305�

2

+ 9953711567910��+ 22429576515805186725�

2

q

3

(�; �) = 88�

2

+ 793192620��+ 1787370830745640�

2

:

Using d

3

= 13, the �rst equation we obtain for the descendant D involves

a quartic with 60-digit coe�cients. Minimizing this removes a factor w =

8



45382656538986, after which the reduction step produces the more manage-

able quartic g(�; �) = 50125�

4

� 1250�

3

�+950�

2

�

2

� 124075��

3

+6235186�

4

.

Now a small search reveals that g(505; 198) is a square, so we have a rational

point on D, which maps to the point

(u; v) =

�

14846969850

111060601

;

886090079459099250015

111060601

2

�

on C

�55

, and �nally to P

2

as above.

Similarly, P

3

comes from a descendant D

0

of C

0

5

, via C

0

5

and E

0

; the map from

D

0

to E has degree 8. Here we had to compute 15 descendants before we found

one with a rational point.

More examples will appear in [6].
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