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Background to the problem

Theorem. [Shafarevich] Let K be an algebraic number field and S a finite set of
primes of K. Then the set

EK,S := {elliptic curves E/K with good reduction at all primes p /∈ S} / ∼=

is finite.

Examples:

• EQ,∅ = ∅ (no elliptic curve over Q has everywhere good reduction)

• #EQ,{2} = 24 (Ogg) [< 5s]

• #EQ,{2,3} = 752 (Coghlan, 1966) [≈1m]
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• EQ(
√
−23),∅ = ∅

The last example arose during work of Mark Lingham (Nottingham) who used modular
symbols to show that there are no cusp forms of weight 2 and level 1 for
K = Q(

√
−23), so we expected that there should be no elliptic curves with everywhere

good reduction over K. But this case had not previously been treated....
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Statement of the problem

Given K and S, find EK,S explicitly!
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Some history I: over Q

1. Ogg (1966) found all elliptic curves with conductor N = 2e, then Coghlan did
the same for N = 2e23e3 (see Antwerp IV tables). Our Magma program verifies
Coghlan’s table in about one minute.

2. Certain sets S = {2, p} arise in solving Fermat-type equations (c.f. work of
M. Bennett). Conductor N up to 28p2, so for p > 20 these are hard to find
using modular symbol methods.

[Remark: N = condE =
∏

pep with e2 ≤ 8, e3 ≤ 5, ep ≤ 2 for p ≥ 5.]

3. S = {2, 3, 5, 7} and S = {2, 3, 11}: joint work with de Weger (1993) produced tables
but BdW never claimed his data was complete.



5

Some history I: over Q

1. Ogg (1966) found all elliptic curves with conductor N = 2e, then Coghlan did
the same for N = 2e23e3 (see Antwerp IV tables). Our Magma program verifies
Coghlan’s table in about one minute.

2. Certain sets S = {2, p} arise in solving Fermat-type equations (c.f. work of
M. Bennett). Conductor N up to 28p2, so for p > 20 these are hard to find
using modular symbol methods.

[Remark: N = condE =
∏

pep with e2 ≤ 8, e3 ≤ 5, ep ≤ 2 for p ≥ 5.]

3. S = {2, 3, 5, 7} and S = {2, 3, 11}: joint work with de Weger (1993) produced tables
but BdW never claimed his data was complete.



5

Some history I: over Q

1. Ogg (1966) found all elliptic curves with conductor N = 2e, then Coghlan did
the same for N = 2e23e3 (see Antwerp IV tables). Our Magma program verifies
Coghlan’s table in about one minute.

2. Certain sets S = {2, p} arise in solving Fermat-type equations (c.f. work of
M. Bennett). Conductor N up to 28p2, so for p > 20 these are hard to find
using modular symbol methods.

[Remark: N = condE =
∏

pep with e2 ≤ 8, e3 ≤ 5, ep ≤ 2 for p ≥ 5.]

3. S = {2, 3, 5, 7} and S = {2, 3, 11}: joint work with de Weger (1993) produced tables
but BdW never claimed his data was complete.



5

Some history I: over Q

1. Ogg (1966) found all elliptic curves with conductor N = 2e, then Coghlan did
the same for N = 2e23e3 (see Antwerp IV tables). Our Magma program verifies
Coghlan’s table in about one minute.

2. Certain sets S = {2, p} arise in solving Fermat-type equations (c.f. work of
M. Bennett). Conductor N up to 28p2, so for p > 20 these are hard to find
using modular symbol methods.

[Remark: N = condE =
∏

pep with e2 ≤ 8, e3 ≤ 5, ep ≤ 2 for p ≥ 5.]

3. S = {2, 3, 5, 7} and S = {2, 3, 11}: joint work with de Weger (1993) produced tables
but BdW never claimed his data was complete.



6

Some history II: over number fields

1. It is an open problem to determine those fields K for which EK,∅ is not empty, i.e.,
for which fields there exist elliptic curves with everywhere good reduction.

2. Much work has been done for the case of quadratic fields:

• R. J. Stroeker (1970s): K = Q(
√
−1), Q(

√
−2) and S = {p | 2}.

• R. G. E. Pinch (1980s):
? K = Q(

√
−1), Q(

√
−2), Q(

√
−3) and S = {p | 2}.

? K = Q(
√
−3) and S = {p | 3}.

? K = Q(
√

5) and S = {p | 2}.
Method:

(a) show E(K)[2] is nontrivial, using tables of cubic fields;
(b) then solve several Diophantine equations;
(c) not possible to generalize!
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• Kida and Kagawa (following Comalada, Ishii, Pinch) have determined EK,∅ for

K = Q(
√

d) for many d with −100 < d < 100, but several were missing (including
d = −23);

• Setzer (1978) gave necessary and sufficient conditions for the existence of E ∈ EK,∅
with E(K)[2] 6= 0, K imaginary quadratic: for example, EQ(

√
−65),∅ 6= ∅.

• Stroeker proved: if [K : Q] = 2 and gcd(hK, 6) = 1 then EK,∅ = ∅.
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Algebraic preliminaries: m-Selmer groups

In our method an important role is played by the so-called “m-Selmer groups” for the
number field K. These are subgroups of K∗/K∗m:

K(S,m) = {x ∈ K∗/K∗m | ordp(x) ≡ 0 (mod m) ∀p /∈ S}.

So (the class of) x ∈ K∗ lies in K(S,m) if the OK,S-ideal it generates is an m’th
power, and we have the exact sequence:

1 → O∗
K,S/O∗m

K,S → K(S,m) αm−→ CK,S[m] → 1

This is analogous to the Kummer sequence for elliptic curves:

0 → E(K)/mE(K) → Sel(m)(K, E) → X[m] → 0.
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Computing m-Selmer groups of K

• We will need to use these m-Selmer groups for m = 2 primarily, but also for
m ∈ {3, 4, 6, 12}.

• When m is prime, the computation of K(S,m) is a standard task of computational
algebraic number theory, and is provided (for example) in Magma with the command
pSelmerGroup.

• When gcd(m,n) = 1 then K(S,mn) ∼= K(S,m)×K(S, n).

• in general...
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Computing m-Selmer groups of K

1

��

1

��

1

��

1

��

1 // µm,n // O∗
K,S/O∗n

K,S
m

//

��

O∗
K,S/O∗mn

K,S //

��

O∗
K,S/O∗m

K,S //

��

1

��

1 // µm,n //

��

K(S, n)
m

//

��

K(S,mn) //

��

K(S,m)

��

αm,n
//

CK,S[m]

nCK,S[mn]
// 1

1 // CK,S[n] //

��

CK,S[mn]
n

//

��

CK,S[m]

��

//
CK,S[m]

nCK,S[mn]
//

��

1

1 1 1 1
where

µm,n = µm(K)/(µmn(K))n.
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An analogous diagram

0

��

0

��

0

��

0

��

0 // Ker // E(Q)/nE(Q)
m

//

��

E(Q)/mnE(Q) //

��

E(Q)/mE(Q) //

��

0

��

0 // Ker // S(n)(E/Q) //

��

S(mn)(E/Q) //

��

S(m)(E/Q)

��

// Coker

��

// 0

0 // X(E/Q)[n] //

��

X(E/Q)[mn]
n

//

��

X(E/Q)[m]

��

// Coker

��

// 0

0 0 0 0
where

Ker = E(Q)[m]/nE(Q)[mn], Coker = X(E/Q)[m]/nX(E/Q)[mn].
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Computing m-Selmer groups of K

For example, to compute K(S, 4) we first compute K(S, 2) and then “lift” to K(S, 4):
the obstruction to this lift is measured by a quotient of the 2-torsion in the S-class
group of K.

If we denote the image of K(S,mn) in K(S,m) by K(S,m)mn, then the (finite
abelian) group K(S,mn) is an extension of K(S, n) by K(S,m)mn.

Application: We will use these Selmer groups in two related ways: most obviously, to
parametrize elliptic curves with given j-invariant (using m = 2 unless j = 0, 1728); and
also in obtaining restrictions of the possible j-invariants which need to be considered.

For simplicity, in this talk we will

• omit the cases j = 0 and j = 1728;

• assume that S contains all primes p dividing 2 or 3.
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Our method: overview

There are two main steps in our method; the first step for the case S = ∅ is similar to
Kida’s method. Given K and S,

• Step A: Find a finite set of possible j-invariants

• Step B: Find all possible curves for each j-invariant

Step B is quite straightforward (details below) while Step A leads us to the complete
solution of several Diophantine Equations (over K): specifically, we need to find the
complete (finite) set of all S-integral points on many elliptic curves of the form
Y 2 = X3 − w (with w ∈ K). We use all currently available tools for this! In fact our
method is not very original (though it has some original features), but it aims to be an
(almost) automatic combination of the (almost) standard tools which are now available
and becoming more sophisticated and powerful. Our implementation is in Magma.
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The condition on j

The following result characterizes the j-invariants we seek:

Proposition. Let E be an elliptic curve defined over K with good reduction at all
primes p /∈ S. Set w = j2(j − 1728)3. Then

∆ ∈ K(S, 12); j ∈ OK,S; w ∈ K(S, 6)12.

Conversely, if j ∈ OK,S with j2(j − 1728)3 ∈ K(S, 6)12 then there exist elliptic
curves E with j(E) = j and good reduction outside S.

To apply this, we first determine the group K(S, 6)12 to find the set of possible w.
Then for each w we determine whether the class of w contains a representative w′ such
that w′ = j2(j − 1728)3 with j ∈ OK,S.
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The auxiliary curves

Proposition. Let w ∈ K(S, 6). Then each j ∈ OK,S (j 6= 0, 1728) with j2(j−1728)3 ≡
w (mod (K∗)6) has the form j = x3/w = 1728 + y2/w, where P = (x, y) is an S-
integral point on the elliptic curve

Ew : Y 2 = X3 − 1728w

with xy 6= 0.
Moreover, suppose that we also have w ∈ K(S, 6)12. Choose u0 ∈ K∗ such that
(3u0)6w ∈ K(S, 12); then the elliptic curve

E : Y 2 = X3 − 3xu2
0X − 2yu3

0

has j-invariant j and good reduction outside S. Moreover, the complete set of curves
with good reduction outside S having j-invariant j is the set of quadratic twists E(u)

for u ∈ K(S, 2).
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Summary: Step A

Step A of our algorithm is thus:

1. list all w ∈ K(S, 6)12 (taking S-integral representatives); for each:

2. construct the curve Ew : Y 2 = X3 − 1728w;

3. find Ew(K) (an explicit Z-basis);

4. find Ew(OK,S) (all S-integral points).

With K = Q the number of w to consider is 2 · 6#S; for general K we get extra
contributions from units and the 2- and 3-parts of the class group C`K.

After finishing Step A we will have all possible values of j, namely j = x3/w where
(x, y) ∈ Ew(K) is an S-integral point.
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3. find Ew(K) (an explicit Z-basis);

4. find Ew(OK,S) (all S-integral points).

With K = Q the number of w to consider is 2 · 6#S; for general K we get extra
contributions from units and the 2- and 3-parts of the class group C`K.

After finishing Step A we will have all possible values of j, namely j = x3/w where
(x, y) ∈ Ew(K) is an S-integral point.
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Step B: finding the curves from their j-invariants

As is well-known, the j-invariant determines the isomorphism class of the elliptic curve
up to quadratic twist (since we have excluded the cases j = 0 and j = 1728).

The last part of the previous Proposition lists precisely which quadratic twists actually
do have good reduction outside S: we find a first such twist from the information that
w ∈ K(S, 6)12 (and not just ∈ K(S, 6)); then the other valid twists are the twists of
this base curve parametrized by K(S, 2).
Remarks:

1. If S does not contain all primes dividing 6, some of the curves will need to be
discarded as they may not have good reduction at such primes;

2. For j = 0, 1728 we must consider sextic and quartic twists respectively. The exact
set of twists to be considered is left as an exercise!
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Problems

• There are many curves Ew to consider in Step A

• To find all S-integral points on each we must first find the full Mordell-Weil group
Ew(K); then use the method of elliptic logarithms, LLL, ...

• Over Q, Magma now has good tools for finding Ew(Q) (including descent methods
and Heegner points), and a function (due to Herrmann) for finding S-integral points
automatically. But there are still curves for which Magma cannot find Ew(Q)
without some help (see examples to follow).

• Over general number fields K, everything is more difficult. in many cases Magma
can now find the M-W group (using new 2-descent functionality provided mainly by
Nils Bruin). BUT there is not yet an implementation of the S-integral point function,
except for Herrmann’s own code (from 2003), not publicly available–yet.
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• Apart from the one example K = Q(
√
−23), S = ∅ where Herrmann kindly verified

that our sets of integral points on Y 2 = X3 ± 1728 (over K) were complete, our
results over number fields are all currently conditional on our lists of S-integral points
being complete.
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Examples/Results over Q

• S = ∅ =⇒ Q(S, 6) = {±1} so we consider Y 2 = X3±1728 which both have rank 0
and (∓12, 0) are the only integral points, so the only candidate j is j = 1728, leading
to no curves with conductor 1.

• S = {2} leads to 13 possible j and 24 curves with conductors 32, 64, 128, 256.

• S = {2, 3} leads to 83 possible j and 752 curves with conductors 2a3b.
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• S = {2, 17} leads to 42 possible j. During Step A:

? w = −175 gives a curve of rank 0 with Selmer rank 2, so we used the analytic rank;
? The curves for w = 25175, 22174,−25174,−24174 have rank 1 with large generators.

For example, the generator for w = 25175 has x-coordinate with denominator d2 with

d = 3 · 5 · 64189 · 259907 · 20745658643 · 79102726763

which we computed using a Heegner point. So this curve has no S-integral points –
but there should be an easier way to show that!

• Complete lists for S = {2, 3} (752 curves), S = {2, 3, 5} (7552 curves),
S = {2, 3, 7} (7168 curves), S = {2, 3, 11} (6640 curves) are available at
http://www.maths.nottingham.ac.uk/personal/jec/ftp/data/extra.html.
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Examples/Results over quadratic fields

• K = Q(
√
−23), S = ∅: K(S, 6) = {±1,±(1+ω),±(2−ω)} where ω = (1+

√
−23)/2

(class number 3, units ±1). Four w ∈ K(S, 6) gives curves with trivial Mordell-Weil
group; the other two are Y 2 = X3±1728 which both have rank 1 over K; we found a
generator for each and (with help from Herrmann) showed that only j = 0,±1728 are
candidates, but none gives a curve with everywhere good reduction over K. Hence
there are no such curves.

• K = Q(
√
−1), S = {1 + i} (treated by Stroeker): we find 22

possible j and 64 curves with condutor (1 + i)e, in agreement with Stroeker:
e 6 8 9 10 12 13 14
# 2 2 8 12 8 16 16

Our result here is conditional on our lists of (1 + i)-integral points being complete.
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• K = Q(
√
−23), S = {p2} where N(p2) = 2 and the class of p2 generates the class

group. We (conditionally) find EK,S = ∅, in agreement with the prediction from Mark
Lingham’s modular symbol computations.

• K = Q(
√
−23): for certain small integral ideals n, Mark Lingham computed cusp

forms of weight 2 and level n but found no matching elliptic curves of conductor n.
Using our program we found some of these curves. For example, the curve with
coefficients [0, 0, 0,−53160w − 43995,−5067640w + 19402006] and conductor n =
p2p2p

2
3p3 of norm 108 was found this way.

• K = Q(
√

38): we found the following curve with everywhere good reduction:
Y 2 = X3 + a4X + a6 where where ε = 6

√
38 + 37 is a unit and

a4 = −33 · 5 · ε−1 = 810
√

38− 4995,

a6 = 2 · 33 · 7(
√

38− 2)ε−1 = 27594
√

38− 170100.
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