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In this thesis, an algorithm is given for computing certain spaces
of automorphic forms defined over Euclidean Complex Quadratie Fields,
by means of calculating explicitly Ehe actiarof the Hecke algebra on
the first rational homoiogy group of hyperbolic upper half-space
modulo a discrete subgroup, which is a congruence subgroup of SLr(O*)
where K is the field in question. The motivation for this is t6
provide evidence for a precise conjecture, similar to Weilts
conjecture over the rationals, relaEing certain of these forms
with elliptic curves defined over K.

Ext.ensive tables are given of the results of implementing the
algorithms on a computer, giving the dimension of the space of cusp
forms of weight two for Io (a), where a is an ideal of 0,, with norm
less than a certain bound, together with the splitting 5t tte space
into eigenspaces for the Hecke algebra, and the first few Hecke
eigenvalues for the newforms at each leveI. I,iIe also give tables
of elliptic curves defined over K, with sma11 conductor, with the
Trace of Frobenius at the first few primes: here Ehe conductor was
found by implementing Taters algorithm on the computer. The curves
were found by a systematic search procedure.

Lastly, we explain certain connections within Lhe tables by
proving some results by means of an extension of the theory of
Atkin-Lehner to the present situation. In particular, we show that
newforms always occur in pairs, with opposite eigenvalues for a
certain involution, not necessarily at the same 1eve1.
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INTRODUCTION

The aim of this thesis is to provide evidence for an anal0gue ofweilts conjecture' that every elliptic curve defined over Q is parame trLzed,by modular functions, for complex quadratic fields. A large amountof evidence exists in support of the conjecture in the rational case:see' for example, the tables in volume rv of the Antwerp proceedings r21:also, the conjecture has been proved in certain special cases: for example,in the case of elliptic curves over Q with complex multiplication. Beforeone can even state a conjecture for couplex quad,ratic fields, one mustdefine what is meant by a rmodular fu,ctionr over such a field, and inorder to collect evidence for the conjecture, one has to have a uethodof calculating these objects in particular cases. Indeed, it was onlyafter a substantial amount of data had been collecte. that the precisenature of the relation between automorphic forms over the fields consideredand elliptic curves over the same fields began to emerge, although sucha connection is predicted as part of the general 'Langlands phil0sophyr.
Most of the work behind this thesis was concerned with devel0ping amethod of calculating automorphic forms over a complex quadratic field,

and with carrying out the computations for the Euclidean fields.
To set the scene, and for later referencer r.rp start by presenting abrief surmary of the theory of modular forms and elliptic curves over therational field e. This is the content of Chapter I. No attempr hasbeen made to be complete in this survey: only those aspects of therational theory which will be referred to later have been included. Fora more couprehensive survey, see the article by Birch and Swinnerton Dyerin Anrwerp IV (op.cit.).

chapter 2 is spent in devel0ping the geometry of hyperbolic upperhalf-space, and in particular the action of certain discrete groupsthereon. The main references here are Beardon [4] and Swan L2Ol.
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Then, in Chapter 3, certain functions on this space are introduced, which

will play the r61e of the'cusp forms of weight 2' of the rational theory.

Our approach here largely follows that of Weil in [24 ], but avoids the

use of adetles and is more elementary in nature. As in the rational case,

one calculates the cusp forms of weight 2 by means of the action of the

Hecke algebra on homology: Ehe heart of the thesis lies in Chapter 4,

where it is shor,m how to generalize modular symbols in order to provide an

algorithm for computing the homology of upper half-space modulo a congruence

subgroup, and the Hecke acti.on on homology. The algorithu is given

explicitly for each of the five Euclidean fields, with some remarks on

how one would proceed with the others. It is a generalization of an

algorittrm given in Manin [t0] tor the rational case. While the derivation

of the algorithm is highly geometric, the end result is purely a quesrion

of algebraic manipulation of arithmetic symbols, and is suitable for

implement.ation on a computer.

Chapter 5 consists largely of tables of the results of the couputations:

for each of the Euclidean fields, and for each ideal a in such a field

with Na less than some bound, we give the dimension of the space of cusp

forms of weight 2 for lo(a), with a list of the first few Hecke eigen-

values of the newforms at each level. Also included are tables of

elliptic curves for each field with sua1l conductor, found by a search

procedure. Some remarks are made on the computations themselves, as well

as a discussion of the results in the tables. Certain of these results

were already available in work of Mennicke and Grunewald Ill], [12],

who use a slightly different approach.

In Chapteir 6 sL.:[e ot' the paE'Lerns and regularities in the tables of

the previous Chapter are explained by means of certain t twisting

oDeratorsr. These are straightforward generalizations of the RO operators

of Atkin-Lehner in [:]: for example, one finds that newforms always occur

in pairs, not usually at the same 1eve1, with opposite eigenvalues for



J

a certain i.nvolucion, and that only

to an elliptic curve. Also in this

theory of Atkin-Lehner, generalized

of this has already been provided by

context of automorphic forms over a

one of each pair seems to correspond

Chapter is a development of the

to a complex quadratic field; some

Miyake [13] in the more general

general global field.
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CHAPTER 1

Modular Forms and Elliptic Curves over Q

This Chapter is a survey of the theory of Modular Forms and Elliptic

Curves over the Rationals. trie have restricted our attention to those

aspects of the theory which will be referred to 1ater. For the theory

of Modular Forms, the main references are the books by Lang 19 I and

Shimura ItZ] ; for Elliptic Curves, see Taters article [Zt ] ; for

the connections between them, see Antwerp IV l2l , and especially the

article there by Bireh and SwinnerEon Dyer.

In the last section we describe the conEents of the remaining

chapters of the thesis.

5 1 . 1 Geometry of the upper half-plane
+

The group GL (2rR) of rea\ 2x2 matrices with positive deEerminant act.s

on the upper half-plane

H := {ze C:Im(z)>0}

aecording to the familiar rule

(r.r.r) ['l'l G) = az+\,.

f" aJ \4' cz+d'

Extend H by adding the point i- at infinity, and the real 1ine, to
- * - .. t la tl -d . aobtain H" := H u R u {i-}; rhen t" ;,,I sends .t ." i- and i- to i

(if c = 0 then both of these quotients are to be interpreted as i-).

The extended upper half-pIan. Ho i" given the standard topology (c.f.

Shirnura [17J 91.5),and a metric d.s2 = (dx2 + ay2)/y', where z = x + iy,

with respect to which its geometry is hyperbolic, and GL+(2,R) is its

group of isometries.

Next consider the action of a discrete subgroup of eU+(Z,R), for

instance I = SL(2,2); here 'discrete' means discrete in the matrix

topology, where et+12,R; is identified with a subseE of Ra in the



obvious way. It is a fact (c.f. Beardon [ 4 ] Theoren 4.2) that a

+*
subgroup of GL (2,R) is discrete if and only if its action on H is

discontinuous, in t.he sense that every compact subset of Hx meets only

a finite number of its images under the action. A fundamental region

for Lhe action of f is given by the triangle F with vertices at i-, p

and o (where p = exp(ni/3) and ui = p2); the two vertical sides are

identified by rhe acrion of T = l: ll which rakes z to z+1; rhe
lu t)

bottom, a circular arc from p through i to o, is self-identified by

- lo -rl$ = t; OJ ,ti"t sends z to -1/z and Ehus fixes i while interchanging

p and u-r. The orbit of i* under I consists of {i-} u Q; these points

are called cusps. The point at infinity is ca11ed i- in this context

to emphasize that as z = x + iy approaches Ehe cusp in F, the real

part x is bounded, while the imaginary parE y tends to infinity.

If G is a subgroup of finite index k in f, and {sr,a?,...,crU} is
k

a set of right coset representatives for G in I, then .g,*ja is a

fundamental region for G in H*: it is a (hyperbolic) polygon with

a certain number of edges identified in pairs by elements of G. The

*
quotient spac.e XG(C) := G\H can be given a complex structure (c.f.

Shinura [ 17] 91.5), with respect to which it is a compact Riemann

surface. fn partieular the local variable at ie i" "Zni'lh, ,h.r"

h is the smallesr positive inreger such that 
[; l] belongs to G.

*
There is a natural projection tp: H -+ XG(C). The only points of

H which are fixed by nontrivial elements of I are those in the orbits

of i and p (which are fixed by S and TS, of orders 2 and 3 respectively) ;

the images of these orbits under q) are ca11ed elliptic points of Xa(C);

the images of Q u {i-} are called parabolic points, or cusps; both

sets are finite, and tp is unramified outside them.

5l .2 Congruence subgroups

For a given positive inEeger N we define the following subgroups of I:



T(N)

ro (N)

Note that Io(N)

congruence subg

one which conta

Shimura pp. 20-

and

where in each c

dividing N.

wrire \( c)

denoted Xo(N),

on Xs(N).

.la b'):= il" al .

.la bl:= ,l I -l e

'l." dJ

> I(N); and

roup of 1eve1

ins I(N) for

24) rhar

I f , r(N)]

I f t fo(N)]

ase the produ

6

f : a = d = l, b = c 
= 

0 (mod N)];

f:c=0(modN)].

a group G with f(N) c G c f is called a

N; in general, a congruence subgroup is

some N. A short computation shows (c.f.

e -t= N-11 (l-p ')

= N II (l+p-1)

ct is taken over the distinct primes

tot ,ro(u)(c). There is a smooth projective curve'

such that XN(C) is precisely the set of complex points

91.3 Modular Forms

Consider functions f: H + C

is a non-negative even inEeger, we

(1.3.r) (f lo)o(z) :=

Let G be a subgroup of I of finite index.

Definition 1.3.2 A moduTar form of weight k for G is a function

f : H -+ C satisfging

(i) f is meromorphic on H;

(ii) (tld- = f for aTL a eG;tk

(iii) f is meromorphic at everg cusp of G\Hx.

For the cusp i-, condition (iii) means the following. Because of

condition (ii), f is invariant under s + 7+h where h is the width of the

cusp at i- as in 5-t . I , and we can thus writ e f (z) = y("2nL'lh)

for some function F(q), meromorphic in the domain 0 . lgl (1

for some r>0. Condition (iii) means that P is meromorphic at q = 0.

The condition at oEher cusps ean be reduced to this case by using a

suitable element of I to map the cusp to ioo. For more detail, see

rf s = [: ll t" in GL+(2,n), and
[c o.,

define a new function (f lo)O .ly

t ( ail(ad-bc) ik 
1 "r*a) 

-k.
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Shimura (op. cit. g2.l).

A modular form of weight 0 for G is a

can be written as pog for some function

projection of gl. l.

modular function for G, and

g on Xa(g), where g is the

A modular form of weight 2 for G satisfies

( I .3.3) t(az)d(az) = f(z)dz

for all o, e G, by (1.3.1) and (1.3.2)(ii); so f(z)dz is an invarianr

differential and can be written as eo u for some differential trl on

XG(C). We will mainly be concerned with forms of weight 2, and wil1

frequenEly omit the subscript 2 and wrire flo for (tlo)r.

A modular form f (z) is ca11ed a cusp form if the associated function

F(q) vanishes at g = 0. Denote the space of cusp forms of weight k

for G by SO(G). In particular for G = Io(N) we may rake h = I since

[J l] e ro(N) for every N. so a cusp form of weight 2 ror ro(rq) is a

holomorphic function f: H + C such that

(i) f(az)d(oz) = f(z)dz for all o e Is(N);

(ii) f (z) has a Fourier expansion tr,], arrgn , where q = e

This sets up a one-one correspondence between cusp forms

for G and regular differentials on Xa(C).

Zriz, 
and a' e c.

of weight 2

Using the algebraic and complex structures on Xa(C) one can compute

a formula for the dinoension of SU(C) tor various subgroups G of f: see

Shimura 92.6.

The definition in (1.3.1) of rhe acrion of GL+(2,R) on forms of

weight k can be exrended by linearity to the real group ring of GL+(2,R);

explicitly, if r. e R and q,. e GL+(2,R), rhen

( I .3.4) (f I I r.cr.). := I r.(f lcr.)... JJK J JK
'We can now define some particular elements of this group ring: for any

positive integer m,

(1.3.5) T :=
m

I
dl,
d>0

i
bmodd

Gla bl
i.o dJ

The matrices appearing in the above sum form a set of right coset
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representatives for f in the set of all integer matrices of determinant

m. In partieular, when m=p, a prime, we have

, ='i' tt "l . lt 9l'p -,lo [o p) io t)
so that

(r lr_),-(r) = p-lkr 11!1 * plkr GD.'PK - P 
ztriz-Substituting in Lhe Fourier expansion f (z) = I.-q' (where g =.e' )

we find that 
@

(r.3.7) (flT).(z) = Ik r 't rI
' p K P' .r="1 t'on P'an/p)'q

vhere we interp."t "rr/, as 0 when p does not divide n.

The Hecke algebra is rhe algebra generated by all the T*i it

preserves Sk(f), and has the following properties.

(i) T_T_ = T_- if m and n are relatively prine;mn mn

l,o o](ii) rr.r, = rrr+r + ,.15 ;J.rr'-l if p is prime;

(iii) The algebra generated by the T* is also generated by the TO for

p prime, and is cormutative;

(iv) There is a formal rEuler product' identity
@-c
L- I.n =n=l n

,, (I - T .r-" [" o] l-2s'-1
ppr,-me pr .lbo,J '' );

(v) Tf. t (z) - Iaren is an eigenform for all the Hecke operators, say

Tof = ),r.f for n > l, then a, * 0, and if f is normalized so that rl = I

then a, = tr_ for all n;nn
(vi) There exists a scalar product (the rPetersson inner productt) on

Sk(f) with respect to which the Hecke operaEors are Hermitian, and hence

Ehere is a basis of SU(I) consisting of forms which are eigenforms for

all the Hecke operators

The Hecke action on SO(C) tor proper subgroups G of I is more

complicated to describe. In the case of G = Io(N), write S, for SO(G);

then for (m,N) = l, the operator T, takes S, to itself, and for the

smaller set {t, : (m,N) = 1 } properties (i) - (vi) sti1l hold with

obvious modifications .

Another important operator is induced by w = 'f:, -ll which on HfN o)
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sends z -+ -l /Nz ; this matrix normalizes Io (N) and so induces a

transformation of \(C) which.is an involution since w2, which is
iu ol
td -l , acts trivially; it coutrutes with all the Hecke operators.

Secondly, eomplex conjugation is also an involution of \(C),
corresponding to the Eransformation z -+ -; (reflection in the

imaginary axis) on Ho, since the conjugate of "Zriz i" 
" 

2ni (-") 
.

Conjugation commutes with W and all the Hecke operators, so that there

is a basis for S, consisting of eigenforms for all the T, (for p / N),

for W, and for conjugation.

If. t(z) e S, for some M dividing N, rhen the function z + f(kz) belongs

to SN for any number k dividing the qurotient fl Such forns are ca11ed

oldforms; an eigenform which is not an oldform is called a newform; it

will be orthogonal to all the oldforms with respect to the Petersson

inner product.

51.4 Elliptic Curves: their Zeta Functions and Conductors

Let E be an elliptic curve (an irreducible non-singular algebraic curve

of genus 1, with a distinguished point) defined over Q, with equation

(1.4.1) y2+alxy+ary = *'*^r*' +a4x+a6

(where the point at infinity is the distinguished point). Assume that

the coefficients a. are (rational) integers, and that the discriminant A

is as small as possible under this condition. (The discriminant is

given by a polynomial in the a., and its non-vanishing is a necessary

and sufficient condition for E to be non-singular; for a formula, see

Taters article in [2 ]). For a priue pr I{€ cau reduce the coefficients

a. modulo p to obtain a curve E, over GF(p). If p does not divide6

then E^ is also an elliptic curve, and we may define its L-series as
P

t (Er,u) := ((l - ott) (t - oru))-l

where o, ar,d. a, are the characteristic roots of Ehe F:'obenius map

(x,y) * (*PryP), which is an endomorphism of Er, and satisfy

(i) 0102 = p i lol | = lcr, l= pL ;
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(ii) ol * o2 = I + p - M (the rtrace of Frobenius' );

here M is the number of points oo En (this is one more than the number

of solutions of (1.4.1) modulo p, because of rhe point at infinity).

0n the other hand, if p does divide. A, then E, has a singular

point P, defined over GF(p). There are three possibilities for P:

(i) P is a double point with each of the tangent directions defined

over GF(p): then def ine L(E-,u) := (l - ,r)-l;
p

(ii) P is a double point with tangent directions conjugare over GF(p);

then define L(E-,u) := (t + u)-l;
P

(iii) P is a cusp: then define L(Er,u) := 1.

The globa1 zeta function of E is obtained by taking the product of

the 1ocal L-series over all primes p:

(1 .4.2) h (rl := II L (Ep,p-s) .

(1.4.3)

where the product is over

This converges for Re(s) , ]t it is conjectured that it has an analytic

continuation to the entire s-plane and sati'sfies a functional equation

similar to that of the Riemann zeta-function.

In order to write down the functional equation precisely, we must

first define the conductor of E. This is

N := IIpf

all primes p, and f is determined as follows:

,{a;

n has a double point;

p hrr a cusp (if p I Z or 3 then f = 2

determining f in any particular case,

f =0 if p

f =l it E

f.>2 if E

There is an algorithm for

Tate's article in I 2)

Now if we let

exactly) .

given in

E" (s) : = tli" lzrr)-tf (s) 6, (s) ,

where I is the Gauuna function, then there is the following conjecture:

The function \ (s) .ls hoTomorphic in the entire s-pJane and. satisfies

(1.4.3) Er(s) = r^r.6u(Z-s;
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with w = +1.

The sign of w has further significance which will euerge later.

The functional equation (1.4.3) has been proved, for example, in the

following cases: when E has complex multiplication (then Er(s) is a

Hecke L-series wiEh Grossencharacter: see Weil [26 l,Deuring t 6 ]); and

when E is a modular curve. In this latter case, Er(s) is the Mellin

transform of a modular form (c.f. Shimura tl8 l). Recall, for comparison,

that the functional equation for the Riemann zeta-function has a proof

which relies on the fact that its Mellin Eransform is the theta function

- ZrLn2z0(z) = Ie-"^^' - which is a modular form for the group generated by

s+7*2 and z+-1/2.

5 I .5 Connections

The eonjecture referred to in the Introduction is that every elliptic

curve defined over Q is in fact a modular curve. More precisely:

Conjecture LetE be an eTTiptic curve defined over Q, and Er(s) =

Ic n-s its zeta function. Then the function f(z) = L" .2ni" , for z innn
the upper haTf-p7ane, is a cusp form of weight 2 for Io (N) which is an

eigenform for a77 the Hecke operators T.^ for P { N, and satisfiesP'
f lW = -wf where w js the sign in the functional- equation (1.4.3).

Moreover, there is a rationaT map Q: Xo(N) * E , defined over Q, such

that o"tg is a multiple of the differentiaL form f(z)dz on Xo(N).

(Here N is the conductor of E, and

if E has equation (1.4.1) then trl =

In fact, the cusp forms arising

be precisely the newforms of 91.3.

for 16 (N) which are eigenforms of

eigenvalues should be equal to the

curves of conductor N defined over

(Frorn I Zi p.197) .

o is the standard differential on E:

dx
2v + a-x + a^ t'

3

from elliptic curves in this way should

In particular, the number of newforms

the Hecke algebra with rational

number of isogeny classes of elliptic

A. On the one hand, Tingley I 23)
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computed the dimensions of SrO for N < 330 (and indeed, more than just the

dimension); on the other hand, search programs for elliptic curves over

Q with sma11 conductor have been carried out. Agreement was found

between the nr:mber of newforms for Io(N) with rational eigenvalues, and

the number of isogeny classes of elliptic curves over Q wiEh conductor

N: see [-2], introduction to Table 1.

The method Tingley used in [23 ] to calculate S* for sma11 values of

N can be sumarized as follows: by means of the duality between homology

and cohomology on Ehe Riemann surf ace \(C), namely

( yro) ->

where y € Ht(\(c),C) and u,r. Hl<q<c>,11, there is an isomorphism

between Hl and H,; one can calculate ,,(\(C),C) by ueans of modular

symbols (this is explained in more deEail in 94.l); one can define a

Hecke aetion on homology itself which respects this isomorphism; this

action can be computed explicitly in terms of modular symbols, leading

to the splitting of the space into one-dimensional eigenspaces. To a

raEional one-dimensional eigenspace (that is, one with all eigenvalues

rational), there then corresponds a cusp form of weight 2, r^rhose

coefficients are given in terms of the Hecke eigenvalues.

However one can, and Tingley did, go further than this: the algebraic

curve Xo(N) may be embedded in its Jacobean variety Jo(N), and the one-

dimensional rational eigenspaces correspond to elliptic curves defined

over Q which are factors of Jo(N); modular symbols give explicit cycles

on Xs (N), and by computing sufficiently many Hecke eigenvalues one may

compute the corresponding forms, and hence their periods, to any

desired degree of accuracy. Lastly, given the (approximate) periods

of the elliptic curve, one can calculate an equation for the curve,

with approximate coefficients. Tingley did this for each of the raEional

newforms he found, and came up with equations whose coefficients were

very nearly integers; and in each case the corresponding equation with

exact integral coefficients turned out to be a minimal equation of a curve

with the

Iu
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correct conducEor (namely the leve1

curves with cert.ain conductors were

N of the newform ) . In some cases,

found for the first time in this way.

51.6 Complex Quadratic Fields

How much of the theory, conjecture, and computation described in

591.1-1.5 can be generalized to a complex quadratic field in place of

a? This is the subject of the rest of this thesis. The most straight-

forward area to generalize is that of the elliptic curves; this will

be done now.

Let K be a complex quadratic field with

let E be an elliptic curve given by (t.4.1)

for each prime ideal O of 0* we can define

just as in 51.4, where the reduced eurve EO

O"/n or GF(Np). The globa! zeta function

6u (s) := IT L (Ep,N(p)

with the product taken over all primes of 0*. The definition of the

conducEor as an ideal f of 0* is also carried out just as before. The

conjectured functional equation now has the form

Eu(s) = 1 t(2-s)
where now Er(s) := lo*l"txt)
(Here D" is the absolute discriminant of K. )

Note that we can expand er(s) into a sum,

6r(s) = id.It* c(a)N(a)-"

where each coefficient c(a) e Z, and for primes p,

c(p) = l-M+N(p),

the tTrace of Frobeniust at prwhere M is the number of points on EO,

including the point at infinity.

The two-dimensional hyperbolic geometry of the upper half-plane H =

SL(2,R)/SO(2,R) will be replaced by the three-dimensional hyperbolic

geometry of tupper half-spacet H3 = SL(2,C)/SU(2), on which SL(2,0K)

ring of integers 0*, and

with coefficients a. in 0*.

a 1oca1 L-series t (EO,u)

is now defined over

is thus

-s)

1" 1zn)-2"(r (s) ) 
2tr 

t"> .

(see [16] ).

just as in the rational case:
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acts discontinuously. This will be discussed in detail in the following

Chapter.

As 'cusp forms of weight 2r for SL(2,0*) and its subgroups we intro-

duce cert.ain functions on H, which will correspond to invariant diff-

erentials (1-forms) on the three-dimensional quotient space. These

will have Fourier expansions of a slightly more complicated form, but

we will be able Eo define a Hecke action which will play the same r61e

as in the rational theory. The notion of tnewform' will generaLize, as

will the connection between homology and cohomology: all this will be

the subject of Chapter 3.

Explicit calculation of spaces of cusp forms is then possible by

calculating the relevant homology and its Hecke action by means of

suitably generalized modular symbols. Here we do not have the

conjugation involution mentioned in 5t.3, but instead ve have an

involution induced by the action of 
[; l] , where e generares rhe unir

&
group 0* of 0*, which normalizes Io (a) for any ideal a of 0*. This

will play a similar, but not identical, r61e to conjugation in the

rational theory. .This is the subject of Chapter 4, where detailed

algorithms will be given in the cases of the five Euclidean fields

(where both the geometry and the algebra are simpler than in the general

case), with remarks as to how they might be extended to the other

fields with unique factorization as well as to the fields with class

number greater than one.

In Chapter 5 we describe in detail the actual computations which

have been carried out, and provide tables of the results, with some

cortments on them: in particular, these tables provide some evidence

of the truth of a conjecture sinilar to the Weil eonjecture above for

elliptic curves over Q.

Lastly, in Chapter 6, we show how a great deal of the theory in

Atkin-Lehner [ 3 I generalizes fairly easily, with modifications
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according t.o the 1oca1 arithmetic, to apply to eongruence subgroups of

SL(2r0*) on the one hand, and the Fourier expansions of cusp forms of

weight 2 for such subgroups on the other. In particular, we prove some

results suggested by the patterns in the tables of Chapter 5.



CHAPTER 2

GL(2,C) and Hyperbolic Upper Half-space

In this Chapteq I will define the three-dimensional hyperbolic space,

which will replace the upper half-plane as the space on which modular

forms for eomplex quadratic fields are defined, derive the action of

GL(2,C) on it, and give some of its geomet.rical properties. This

geometry will play an important part in Chapter 4, where it will be

used in the proof of the algorithm for computing spaces of cusp forms

by means of homology.

The main references here are Beardonrs article [ 4] and Swan [2g].

52.t oefinirion of H

Recall that. every matrix in SL(2,R) can be written in the form
r ' ' 1 -l

(2 1 1) [: :] = 
[;, ;_;.] [ :::: :::3] = y-'[il T] .,"

I cosO sin0') r
l-;i;e ;;;;j ' Here x'v' and 0 are given bv the formulae

. ai+b
X?l-v=-' ci+d'

More generally, any matrix in GL+(2,R)

where r(0) =

(2. t .2)

(2. I .3) f" ul
1." dj

e= arg(ci+d).

may be written as

r (o)

Thus we have a decomposition

R* ],

> O, xry e R),

with x,y and 0 again given by (2.1.2).

GL+12,R)=ZBK where t- {tt:r€
, - ,fv *lo=tli,,J:Y
K = S0(2,R).

So we can identify PGL+(2rR) = PSL(2,R) = BK. Also since the subgroup

can be mapped bijecrively Eo rhe upper half-plane H via 
[; ;] - x+yi,

we can express H as PSL(2,R)/(, where ( = PS0(2,R). Explicitlyr r{e

have a map T : PSL(2,R) -> H

(2.1.4) la t) ai + b
l"aJ ->;Fd
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and the inverse image of i e H is R = PS0(2,R).

la tl (, '\as l* :l -' lt ?l(i) where on rhe right we havel"aJ l"dJ'
defined in $l.l; it is then clear that, under the

B <-+ H, the action of PGL+(2,R) defined in 5l.l is

the coset action on the coset space PGL+(2,R)/R.

Now there is a decomposition of GL(2,C) similar

element of GL(2,C) may be written as

(2's) [::] = 
[3 l] [;;] [+;]

with o ;i 0, t e R*, z € C, and l"l' * lrl' =

by the formulae

(2.1.6) ,=(aZ+uE)(l"l'* ldl')-1 :

f = l"d - ucl (l"l' * lal'>-1.
So we can write GL(2,C) = ZBK where now Z =

!=

We may identify PSL(2,C) = PGL(2,C) = BK and

K = PSU (2,C).

Definition upper HaTf-space is defined as

We can write (2.1 .4)

used the action

identification

none other than

to (2.1.3): every

1; here z and t are given

{crr : 0,

{[;;] :

5g(2,C).

hence B

e C*];

t e R, t > 0, z e Cj;

= PSL (z,C)/f, where

(2.1.7) Hg := {(zrt) z z e C, t e Rr t > 0}.

clearly the map 
[; ;1 

.' (z,t) is a bijection from B to H3; so I^7e can

identify H, = PSL(2,C)/PSU(2). Now we can extract an action of PSL(2,C)

on H, from the natural coset action on B; direct calculation shows that

this is given by the formulae

la bll-il : (z,t) -+(z'
(2.1.8) lc c

-t _ (az+b) (cz+d) + (at) (ct)

lcz+al2 + lctl2

,tt) where

I I ad-bc I t
lcz+dl2 +

is a remarkable

quaterniort h = z

l".l'
fact that if

+ tj we can

Denote the point (0,1) in H, by j. ft

identify the point (z,t) e H, with the

express formulae (2.1.8) succinctly as

f.tl : h
lc aJ

ah+6+' ch + d'(2.1 .e)



where on

notation

(2.r.10)

the right-hand side

r^/e can express the

r8

we have quaternion division.

proj ection

aj +b
cj+d

image of j is just PSU(2).

In this

PSL(2,C) -+

l'a u')

[" u.J ->

PSL(2,C)/K=B=H3

as

(compare (2.1.4)); the inverse

92.2 The GecmetrJr of H,

As a mat.ter of notation and convention, we will identify C with
1

R2 x {O} in R3, and thus H, wirh i(x,y,t) e Rr: t r 0}; denore rhe

one-point compactifications of C and R3 Uy C- and R3 r""p."tiveIy;

identify i- e C- with "o . n3; and idenrify C- wirh the boundary of H,
2

in Rl. As coordinates for Ho we will use eiEher (zrt) or (x,y,t), so

that z= x + iy, whichever is more convenient. The point at infinity

will sometimes be referred to as jo.

An.invariant Eetric for the action of GL(2,C) on H, is given by

((dx)2 + (dy)2 + (dr)')/t' The geomerry is hyperbolic; geodesic

lines are half-lines and semicircles perpendicular to the tfloort C_i

geodesic surfaces are half-planes and hemispheres perpendicular to

the f1oor.

The aetion defined by (2.1.8) obviously makes sense when t = 0: hence

we get an action of GL(2,C) on the floor C_, which is identical to the

usual action of GL(2rc) on C_ by linear fractional transformations.
/ _\

Recall rhar a marrix o, = li ?l in SL(2,c) fixes one poinr of c- if
i.c d.J

and only if a+d = t2 (the point being - in the case c=O),and otherwise

two points. In the latter case, the fixed point set of o in H, is

either the vertical semicircle joining the two fixed points, if they are

both on the f1oor, or the vertical half-line joining the fixed point on

the floor Lo jo.

As with the upper half-p1ane, \^re extend H: by including j- and the

points equivalent to it under the aetion of GL(2,C), namely the points
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on the floor C, to form Ht t= H3 u C u {j-}.

The topology of H, is that indueed by the invariant metric. This

is in fact identical to the Euclid.ean topology of H, as a subset of R3:

c.f. Beardon [ 4]. We extend this topology to Ht as follows: a basis

of open neighbourhoods for a point o in C is the set of all 5 ,l,"]rw\ere S is

o?en sphere whose boundar3 iS tangent to C at o; a basis of open'

neighbourhoods at joo is the collection of sets {(z,t) : r > rs} v ::j.J tor

all to > 0. The action of GL(2,C) on H, is transirive: for the point

j is carried to (z,t) by rhe marrix [; ;l ; rhe srabilizer of j is

the set of matrices of rhe form [::l ,itt ,,, e C and l.rl' * lvl2 * o,
l-v uJ

since if j = li i ! (in rhe quarernion norarion) rhen aj * b = j(cj + d)cJ+d
= -E + dj, and hence a = E and b = -;.

92.3 Discrete Subgroups and Fundbmental Domains

As in the two-dimensional case, we say that a subgroup G of SL(2,C)

acts discontinuously on H, if every compact subset of H, meets only a

finite number of its images under elements of G. As before, it is true

that G acts discontinuously if and only if it is discrete (in the matrix

topology): see Beardon (op.cit.) Theorem 4.2. For such a subgroup G,

we define a fundamental domain or region for G to be a subset D of H" with

the properties

(i) D is open in Hr;

(ii) Each orbit of G in H, meets D at mosL once, and meets the closure

D of D at least once.

From (il) it follows rhar H: = gyc gD, and that if g € c: {t} then

gD n o = 6.

There is a general procedure for constructing fundamental douains, as

fo11ows. Select any point Pe in H, not fixed by any element of e: {l};

then the Dirichlet region D with centre Po is defined by

D := {e . u, : d(P,Po) < d(P,BPo) Vg e G - {t }}
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where d(-,-) denotes the hyperbolic distance. Such regions have the

following properties (c.f. Beardon op.cit.):

(i) D is a fundamental domain for G in Hri

(ii) D is convex;

[Proof: let Pr,Pz be distinct points in H, and define

S(P1,P2) := {r e n, : d(P,Pr) = d(P,P2) }

which is a hyperbolic plane such that P1 and P2 are inverse points rrith

respect to the Euclidean sphere it determines; its complemen! in H, is

the disjoint union of two convex half-spaces

H(P1rP2) := {r e H, : d(P,r1) < d(P,Pz) }

and H(Pz,Pr). Then D = ,.,^{l} 
H(Po,BPo), an intersection of convex

regions. l

(iii) D is locally finite: that is, each compact subset of H, meeEs only

finitely many images under G of the closure I-;

(iv) The boundary of D is a countable m:mber of geodesic line segments

and polygons: a rhyperbolic polyhedronr;

(v) The map 0 : G\5 * c\H3, induced by the inclusion 5 * H:, is a

homeomorphism;

(vi) The'faces of the polyhedron D are identified in pairs by certain

element.s of G: these elements generate G.

It follows from (v) that G\D is topologically independent of the

choice of point Ps used to define D.

The groups G we will be interested in are subgroups of finite index

in PSL(2,OK) where 0* is the ring of integers in the complex quadraEic

field K. In the nexL section we will give, as examPles of the above

siEuation, and for use in Chapter 4, fundamental regions for PSL(2r0K)

for several fields K. These will all be Dirichlet regions as defined

above.
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92.4 Fundamental regions for SL(2,0O)

Let K = Q(/-m), where m is a positive square-free integer, and 1et

0* be its ring of integers. Fix an integral basis { t ,cl} for K as

follows: ifmI 1,2 (mod4) theno =/-m; ifm= 3 (mod4) then

o = l(l + /-m). In the cases m = 1,2 and 3 we will write "i", "0",

and ttptt for "ott respectively.

We fix the following elements (*) of PSL(2,0*):

q=lo-,.l . r_lt rl . rr={:,"'l" lr oJ lot) ' v i.ol]'
So the subgroup generated by S and T is the modular group PSL(2,2).

These names will apply to all fields; other elements will be named for

the particular cases as they are needed.

fn I ZO], Swan finds fundamental regions for PSL(2,0*) for various

complex quadratic fields K, and uses these to determine a presentation,

in terms of generators and relations, for PSL(2,0*). Several of these

fundamental regions were given by Bianchi t5 I in the last century;

however, Bianchi worked with the larger groups PGL(2,0K); especially

in the case when the class number of K is greater than one, Ehere are

reasons for working with a larger group, under the action of which every

cusp is equivalent to jo.

lie now surmrarize the results for the five Euclidean fields (m = 1r2r3,

7 and ll). For these are can'translate' any point (z,t) by suitable

powers of T and U, which take (zrt) to (z+l,t) and (z+o",t) respectively,

untit l"l < I : this is precisely because K is Euclidean. In faet, using

S as well as T an{ U we can bring any point within the region

F := {(z,t) : z e Es, lrl' * t' > 1}

where Fs := { ze C z l"l = lr- rolfor any zo e O*}.

(So Fo is a rectangle when m = 1,2 (mod 4) and a hexagon when m I 3

(mod 4)). Indeed, here is an algorithm for doing so:

tll Apply suitable porders of T and U until z e Fs;

(*)
Here and throughout we will write elements of PGL and PSL as 2x2 matrices.
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ln rf outside the unit sphere (i.e. Lt l"l' * t2 > 1) then stop; else

t3l Apply S and.go to [11.

The fact that this algorithm will stop follows from the observation

that S multiplies the last coordinate of (z,t) ly ( 
I ,l' * .';-1, 

"o
that if (z,t) is inside the unit sphere then applying S'raisesr the point,

i.e. increases its last coordinate; and the following lernmoa.

Lenrma For a fixed (zrt) there are onTg finiteTg mang t' > t such that

(z,t) is equivaLent under PSL(2,OK) to (z',tt) for some zt.

Proof: For fixed (rrt), and as crd range over 0*, there are

many values of 1", * al'* l"l'r'in the interval (o,l).

Case m = I Here PSL(Z,llif) is generated by S,T,U and one :

elemenr R = 
[? ;] . rhen RS = [ ; ?], which sends (",t) *

fundamental region is obtained by cutting F in half:

D = {(x+ iy,t) : -! < x < }, 0 . y < t, x2 *y2 + tz > l}.

A1so, we have

PSL(2, zIi]) = (S,T,U,R I tu = ut, S2=R2=(nS) 2=(uns) 2=(TS) 3=(UR) 3=l) 
.

Case m = 2 In this case F is itself a fundamenEal region for PSL(2,ZIOI)

and no further generators are required:

PSL(2,ztol) = (s,T,u I ru=ur, s'=(rs)3=(su-lsu)2=1 ).

case m = 3 Here we have an extra generator R = i:, :.l, and L := RS =
fP ")

[e 3r] sends (z,t) ro (p2z,t). A fundauenral region is obtained by

cutEing F in three:

D = {(x + yo,t) : 0 < x,y < L, lx + ytrrl' * t', l},

where o = p2 = i(-l + /-Z). A presentation for PSL(2,Z[p]) is

PSL(2, ZIp]) = <S,TrU,L I tu=ur, S2=L3=L-'rrr=rrr-1ru-1=1ts) 3=(UT ISL;'=11.

Case m = 7 Here F is itself a fundamental region for PSL(2,Z[cIJ) and

there are no extra generators:

PsL(2,Z[oJ) = (s,T,u I lu=ur, 52=(TS)3=(sru Isu)' = I ).
Case m = I I Again, F is itself a fundamenEal region and there are no

only finitely

further

(-z,t). A

extra generators:

PSL(2,2[oJ) = (S,T,U I ru=ur , S'=(TS) 3=(sTU l su;'=1 ;,.
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92.5 Congruence subgroups of SL(2,0O)

We retain the notation of the previous section. Let

A(K) := SL(2,0K).

Since in any particular context the field K will be fixed, we can usually

omit the superscript and write A for A(K).

For an ideal a of 0* wrire N(a) for the ideal norm:

N(a) := [0*: aJ = Card(O*/a).

Define p(a) := Card ( {O*/a) 
x)

the order of the multiplicative group modulo

Euler g functiorl, we have the formula

q(a) = u(a) oT"(,- N(p)-l)

where the product is over all prime ideals p dividing a.

We define the principal congruence subgroup of A of 1evel a as

A(a) := { li ll e A : a-l, b, c, d-l e a};
[c dJ

that is, A(a) is the set of matrices in A'congruent to the identity

modulo ar.

From now on, in this section, suppose that K has class number one,

so that 0* is a principal ideal domain with unique factorizaxion. Then

the following sequence is exact:

{ri 
-> 

A(a) -' A J* SL(2,0*/a) -+ {r} ,

where n is induced by the naLural projection 0* -+ 0*/a. The only part

of this claim which is not obvious is the surjectivity of n: since 0*

is a principal ideal domain the proofs given by Shiroura (h7l Lerma 1.38,

p.20) or 0gg (t141, Proposition 13, Chapter IV) carry over, as indeed do

the proofs of all the following formulae.

The index of A(a) in A is given by

tA:A(a)l = n(a) p{a (t - N(p)-2).

We also define

Ao(a):= ti:ll eA:ce a),-[c oJ

a subgroup of A which contains A(a) normally. The quotient group is

,

a. By analogy with the

(2.s.1)
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isomorphic to

'[::] 
: a,b,c,d e o"/a, ad r I (mod a)]

which clearly has order N(a)p(a); so we have

tAo(a):A(a)1 = p(a)N(a) = N(")'pT" (l - N(p)-l)

and henee [A:As(a)] = N(a)O{a(l + N(p)-l).

The latter formula remains valid if we replace A and Ao (a) by the

tprojectivizationsr obtained by factoring out the scalar matrices in

each to form A and fs (a) respectively; this is because every scalar

matrix in A obviously lies in Ao(a) for every ideal a of 0r,.
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CHAPTER 3

Cusp Forms of Weight 2 for Complex Quadratic Fields

In this Chapter I will discuss harmonic functions on hyperbolic three-

space H, and define cusp forms of weight 2 for subgroups of SL(2,0*) of

finite index. Ilere K is a complex quadratic field and 0*

is its ring of integers. The harmonicity condition is the natural

counterpart to the analyticity condition reguired of ordinary modular

forms; the invariance condition for a function to be a rform of weight

2t cones from the requirement that it should correspond to an invariant

differential; the cuspidal condition again comes from a consideration

of suitable Fourier expansions. I will also discuss the definition

of Hecke operators on such functions , and show how they act on the

Fourier expansions I define oldforms and newforms for Ao (a) where a is

an ideal of 0"i and show that one can calculaEe cusp forms of weight 2

by means of homology.

The theory developed in the first three sections is taken mainly

from weil's book lz.ql; however, weilts approach is more general, in that

he defines automorphic forms for a general g1oba1 field, which are

functions on GL(2) of the adEle group of the field. When the ground

field is Q, the general theory gives, as a special case, ordinary

modular forms on the upper half-pIane, from the single real embedding

of GL(2,4) into GL(2,R); similarly, in rhe case of a complex quadratic

field which has a single pair of complex conjugate embeddings of GL(2,K)

into GL(2,C), the general theory gives Ehe automorphic forms on upper

half-space which we describe here with no reference to adEles.

The results quoted in Section 3 are proved by Miyake in-[tS ], which

also uses the more general adElic approach.

The relation between homology and cusp forms, discussed in Section 4,
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symbols defined there, have already been discussed and used

ta l.

nHifand

^)isaI

forallB€G,

53. I Harmonicity

Reca11 that we can express the upper half-plane as H= GL(2,R)/Z.O(2,R)

where Z is the group of scalar matrices. A complete set of coset
' -f-, x)representarives is given by rhe subgroup U = {l'O i,J : y > 0, x e R}.

Write n for the projection GL(2,R) -+ H; so the action of GL(2,R) on

B = H is given by g: b -+ r(gb). The space H has the structure of a

Riemannian symetric space, with ds2 = ((dx)2 + (ay)')/y'. A basis

for the left-invariant differential forms on H is given by

(8.,B^) = (Y d' 't z i'-3 )

where z = x + iy. It is convenient to consider, as well as a differential

form on H, its pullback to G = GL(2,R). For i = 112 1-et cr.r. be the

differential form on G which coincides with no$, at the identity. A
1

brief calculation shows that right translations by elements of Z.O(2)

operate on the ,i by means of a Z-d,Lmensional representation Yl of 2.0(2)

which is trivia I on Z: if ul = f',1 rhen this represenrarion is given
[0rJ

by ,1 * t"t(r<6)-lut where < . O?Z), e e Z, and. M is defined as follows:

M is trivial or Z;

-,( 
[-::;3 :::3] ) = [;"u 

o-,iuJ ' ,([-A 
?] ) = 

[? l]
So a differential form on G is the inverse image of one o:

only if it can be written as elo I * e.u2 where O = (g1,g

vector-valued function on G satisfying O(Sr<6) = @(g)M(re )

re0(2),andeeZ.

In particular,
);A (-t n)(3.1.1) to, (s.r(0)) = er (s)e"" and ar (e.l-; 

;,J ) = rar(s).

In view of the second of these relations, not much information is lost

by ignoring the rantiholomorphicr component e2: in the classical

theory, one just considers holomorphic differentials f.(z)dz instead
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of the more general f ,(z)dz + f ,(ilaZ; this is why in Chapter I we

considered the action of GL+(2,R), the group of matrices with positive

determinant, instead of GL(2,R). No such simplification is possible

in the complex case, as will be seen shortly.

Reca1l that on a Riemannian manifold V of dimension m there is a linear

map from r-forms to (m-r)-forms called the adjoinE or * operator. For

a definition, and proofs of the following properties, c.f. de Rham [tS].

If o and $ are r-forms then

(i) **g = (-t)r,'+t)oi

(ii) c^*B=B^*o;
(iii) o ^ 

*o = f dx, n dx, n ... n dx* where f > 0, and f is zero at

exactly the points of V where o, is zero;

(iv) (o,B) := f, o n og is a scalar product.

Let d be the standard differentiation operator from r-forms to (r+l)-

forms; then its transpose 6 with respect to the above inner product is

an operator of degree -1 (in fact 6 = (-1)to-1a o ). The * operator is

its own'transpose: (*o,*B) = (o,B). Now let A = d6 + 6d; this

preserves degrees and is its own transpose; it commutes with d and 6; and

Acr = 0 if and only if do, = 6or = 0, which is if and only if both o, and

*o, are closed (by definition, a differential form $ i. Slglg4 if dB = 0).

A differential form o, is said to be haruonic if Ao = 0; equivalently,

both s and *o, must be closed.

For a l-form o = f,(z)8, + tr(z)Bror, the upper half-plane, we have

*o =-i tTr{z)$, - ir(r)B,). This is closed, if and only if t f | - t2B2

is closed, since T, =ffir; so o and *o are both closed if and only if +

both f,B, arLd frl, are closed; and this is if and only if both tr{")\

and frtz)\ are holomorphic differentials in the upper half-plane.

Note thar from (3.1.1) we have tt(Z) = f ,(z).
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Next we wilt apply these ideas to determine the shape of harmonic

differential forms on upper half-spac" H3.

f'rorn (2.1.5) - (2.1.7) we have H, = GL(2,C)/ZK where K is now SU(2).

Again a complete set of coset representatives is given by the subgroup

_ ,(t r\, = {[; ;,J : z e C, t e R, t > 0]. write n for the projection from

G = GL(2,C) to H3. So H, also has the structure of a Riemannian

symmetric space, with (ds)z = 7dzd.Z + (dt)')/t'. The space of left-

invariant differential forms is now three-dimensional, with basis

B = (3o,Bl,B2) = (- +,+,+r.
Again, denote the pultback of each B. Eo G by ui.. The effect of right

translations defined by elements of 1{Z is now to operate on LrJ = (r0 ,, ,r)t

by a three-dimensional representation. This is clearly trivial on Z

(which acts trivially on Hr). We now determine its action on K.

Calculating the Jacobian matrix of the transformation (2.1.8) we find that

d(z' ,t' ,Z')

.d(z ,t ,Z )

where r = Ei-TT ,

differentials, this

( ,'L -2rsA s2a l
l'alol qri-ssl lal -;.lal It_-_l
[ "'l 2rsA r'L )f lrl'* l"l')'

s =Et, and A = ad-bc.

becomes

In terms of the basis B for

(3.1.2) lal-'rl'12 *1"121

L2l -2rsA s2a'l
-r 

l'.,01 1'F""1lal -;"1^ll B

|. ;'A 2rsl ;24 )

b) [,r r]
;l =l- _l ,say,where, [-v u.i

n G we have z = 0 and t = 1. Sub-

p (urv)o.l where

( u2 zuv .*r2 ')

t-l
l-"" uu-w uv 

I

[;' -2"" "' j

Now when l" tl €
tc dJ

l"l'* lrl'= t.
stituting in (3.1

SU(2) we have

At the identity

.2) gives u)t =

l"
Ic
i

P (u,v)

NoEice that if we write ,i : : I = p(u,v) Ehen p: SU (2) * st(3,C)

is the rhree-dimensional ,iil"#tll represenrarion of SU (2) .

Hence a differential foru on G is the inverse image of one on H, if

and only if it can be written as lriri where @ = (eO,tPr,Or)
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satisfies O(gr() =O(g)p(<6) for all I6 G, r e SU(2),4 6 Z. Let f.

be the function induced on B = H: by gi, for i = 0, l, Z.and write

t = (f0,f 
1,f 2). As a particular case of the relation F(gr) = F(g)p(r)

Iet us record the following: le2ie O 0 ')

(3.r.3) , (<,,.,[;tt 3-tuJ) = re,t) l; ; ;_,,^l\ (" ' )' 1-o o e-'-)

Let o = F.B = ii=O fiBi be a l-form on Hr. Then o is harmonic if

and only if o and *o are closed forms. From the definition of the *

operator one computes

(3.r.4) x(F.B) = -iirl (Bo n 3) * t% rg t ^ B) + i7, (8, ,r Br),

(c.f. I 24 p.107).

Definition A function F: H, * C3 jr said to

(i) F.B js a harmonic differentiaT form;

(ii) F is sTowl-g increasing in the foTTowing

such that

= o(l"l'l
as x -> o ,x € R , uniformlg over compact sets in Hr.

Here the modulus signs I I on the left refer t.o any nom on C3.

Now suppose that O: G + C3 irdr".s the function F: H, * C3, that

F is harmonic, and that O also satisfies the condition

(3.1.s) . ([J ?J 
.-) = "-2ri(' 

* z) aG)

Then F satisfies

F(z,t) = "-2ri'Q 
+ ;)F(o,t).

I{riting ci(r) = f .(o,r) we rhus have f .(r) = "-Zniz 
+Z)sr(t).

F.fl closed implies that gr(t) = -BO(t) rna $.,.-leo(t)) = 2riit-l

while *(F.B) closed iurplies from (3.1.4) .t". $.(.-2-g, 
(t)) =

4rLr-2(sr(t) - so(t)). Let s = 4Trt and K(s) = t-2g, (t). Then

sK" (s) + Kr (s) - sK(s) = Q.

The only solution of this which does not increase exponentially

is Hankel's function KOi so we may take gl(t) - a'*O( nt) and

l. (h ?l ,.,., ;

be harmonic if

sense: there exists N > 0

for all I e cL(2).

Then

B, (t) ,

aSS-+@
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induce F: H^ * C3
3

where c is a constant and

G.t.T) H(t) = (-lit2r, (4n't), .'*o(4nt), 1it2r, (4nt))

93.2 Fourier Expansions and the action of GL(2,C) on Functions
^Let F:H. + 6" be a function which is harmonic, in the sense of the

J

previous section. We will now define an action of GL(2,C) on such

functions which will generalize Definition (1.3.1). For g e GL(2,C),

we wish to define a function flg such thar F.B is an invarianr

differential under the action of a discrete subgroup G of GL(2,C) if

and only if Flg = F for all g e G. Rewrite (3.1.4 in the form

so(t) = -82(t) = -|it2r,(4nt)
r,(s) = - tr,*o(s)).

We have proved

Proposition 3.1.6 Eet O : G

which is harmonic. Then

F(z,r) =

[: :] ". set a = ad-bcr

I
(3.2.2) J(e; (z,t) ) = 1Tl-Tl_rp61"y

(*)Detr-nrtlon' Let g -

define a new function

(3 .2.3) (r 
I e> t

, where Hankelrs function K, is given by

* C3 sati sfg (3.1.5) and

" "-'n'(' 
* z)r')

B' = J(g; (z,t))B(3.2.1)

where if g = thent=cz*d, s=ctand
( ,'L -2rsL "24t_
l.;lo | 1rr-ss) l^ I -;s l^ I

L ;'f 2rsa ;24

[a u]
l"o,J 

€

Fle bs

z,E) =

GL(2,C) and F:H, + C3 -4" as above. Then

F(eQ,t)) J(g;(z,t)).

(*) This definition is not quite analogous to definition (1.3.1) in the
rational ease, since there the definition is designed Lo make f(z)dz,
and not t(z)dzly, invariant although dz/y is the invariant measure on
the upper half-plane. 'Ihe course we have adopted seems most natural
here; the formulae in this Chapter would need modification if the
alternative were used.
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Note rhar (r ls) Q,t). g(z,t) = F(ee,r))J (e;G,t)). g(z,t) =

F(g(z,t)). 8(g G,t) ) by (3.2.3) and (3 .2.1); so rhar rhe differential
F. B is invarianr under g if and onty if F lg = p.

As it will sometimes be convenient in the sequel to pass between

functioruF on 15 and functions @ on G(2rc), we give the appropriate
formulae here. Given O: GL(2,C) * C3 we 1eE F be the restriction
of o to B, which as usual we identify with Hr. on the other hand,

given U , ,, *C3 r" define for g € GL(2,C),

o (e) := F(s(j)).r(e; j )

where j, as before, denotes the point (0,t1 in Hr. Note that in fact
(g) = (r lg)(j), frorn (3.2.3), and that for 95 GL(2,C), rc e SU(2) and

e eZ wehave o(grce) = F(gKE(j))J(grce;j)

= F(s(j) ).i(e; j).J( rce;j)

= o (g) p('<E)

as desired, since when the Jacobian function J is restricted to KZ and

evaluated at j it coincides with the representation p (by definirion of

p). Here we have used the fact Ehat J satisfies the 'chain ruIe, or

cocycle idenrity

J(erer;(z,t)) = J(cl; gr(z,r))J(c2; G,t)).
It will be useful later to have an explicit formula for the special

4", fi.; " ;:T,:,:,,i::1.,,"',.*".;,'"::,T= 
"[:,1]"i':"' 

=

,, f :)rrr,t)) = di"c(Tfr,,,fti = diag("io,r,"-i0) ,h.r" e = ars (a/d).

Now also fron (3.1.3) we can write

.,+, 
ffi ;.1 = r(T,it)ai"e("-tr,,,.tu)

so that the diagonal matrices cancel out, giving us

(3.2.4) ,'1f 3],,,,., = F(+, fr>.
Note thar on the right-hand side of (3.2,4) the second argl,ment is

not necessarily positive real; it is frequently the case that simpler

formulae are obtained by writing them this way: we can convert from one
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form to Ehe other by means of the equation

(3.2.5) r(z,teiO) = F(z,t)diag("i0, t, .-ie)

which follows frour (3.1.3) since

l'."io ,l - 
l"lio o \ (' tl l."iio o

I

I o ,J l; "*"] L, ,Jl, e

This difficulty was avoided in the real case by restricting to matrices

of GL(2,R) with positive determinant: in the present case it is more

convenient just to aI1ow arbitrary non-zero complex numbers as the second

argument of functions. Indeed, there is a case for replacing the uPper

,
half-space H, with {(z,w) e Ct ; rll * 0}; then one could identify (z'w)

with the quaternion z + wj and gain much simplificaEion in formulae

(compare (2.1.8) with (2.1.9)). There might also then be a possibility

of a complex structure. However this line will not be pursued here'

For 'translaEion' matrices ll ll which send (z,t) to (z+b,t),

simpliries eventl,l'.r"' ." (F I [; l] ) Q,E) = F(z+b,t)

since the Jacobian matrix is then trivial.

Now leE K be a complex quadratic fie1d, and 0* its ring of integers.

Let I be a discrete subgroup of GL(2,K) containing all the translations

t; I 
for o, e o": for example r could be the congruence subgroup Ao (a)

defined in 52.5. Then if our harmonic function F is invarianE under l,

we have in particular

(3.2.6) E(z+ 0,t) = F(zrt)

for all o e O*. Fix t and consider F as a function of z aLone: it then

follows that F has a Fourier expansion with respect to the characters of

C+ (th. additive group) which are rrivial on 0*. What do these

characters look like? If rf.r is any non-Erivial character of C+, then

for any fixed w e C the functiort z + r!(wz) is also a character, and in

fact al} characrers of C+ have this form (c.f. Tate's thesis [22] 92.2),

so thar C+ may be identified with its character group. To fix this

identification we will use a particular characLer U, namely

-rtOl')
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(3.2.7) {(z) := "-2triQ 
* Z) 

.

So F has an expansion of the form

F (2, t) = cO (t) * 
& c (o, t) rl(crr; .

As we know that F(z+$rE) = F(z,t) for all B e 0*,

I c(cr,t)U(oz) = I c(cr,,r)rl.r(s(z+B)) = I c(cx.,t)U(clB){@z)

and hence for all 0i,, and all B e 01,

c (o, t) = c (0, t) rl(clB) .

This means that c(o,,t) = 0 unless o is such that i!(clB) = I for all 8.0K.
But V(eB) = exp(-2riTr(e8)) = I if and only if Tr(clB) e Z, so B * r!(sB)

is the trivial map if and only if Tr(oB) e Z for all B . 0K, which is if

and only if o belongs to the tinverse differentt 6-l of K. So the

Fourier expansion takes the form

(3.2.8) F(z,t) = cO(t) * X^_t c(cr,t)rl(clz).
o€0

The different 6 is an ideal of 0": in facr it is rhe principal ideal

(lO)O* where D is the discriminanr of K. Writing | = /D and subsrituting

cl for r1o gives

(3.2.9) F (2, r) =

The coefficient functions

(3. 2. l o)
co(t)

c (o,, t)

-t -tcO(t) * oEO*"(n 
'o,L)qr(n 'd").

c.(t) and c(o,t) are given by the usual formulae:

= JFe,t)d,z;
0rr\C

= ^f U(-ocu,)r(w,t)dw.

= I rr,(-o*,, .([; T] [; ?]) u,,

, leads us to define more

Writing the latter as

c(c,t) = I rl,(-ccnr)r

where @ is the associated

generally for g e GL(2):

(3.2.11) c(o;g)

Since F was assumed to be

function of g for fixed q,

. lt zcto; 
l.o r

oK\c

( i; I (0,,) ) a,

function on GL(2)

o.{, 
u(-orv'r) ' ([; l]')

harruonic, the same is tr

,. From (3.2.11) we have

l*' 
:.i: ;:-:l :llioK\c

dw.

ue of c(ct;g) , as a

;l t; Tl") dw

z*wl \ -, J* / o"
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= J r].r(-s(w-z) )

= U(cr"; c (o; g) '

I]' ) .,

t apply Proposition 3.1.6 directly to this since we have the

r tl;(oz) instead of iJ.r(z). But if we def ine c'(o;g) :=

0l
iJel then er satisfies

. . (t z\c' (o; 
lo i1 *t = {(z) c' (d; e) '

Hence by Proposition 3.1.6 there is a constant c,(o) such that

c' (o; 
[; ;], - cr(o,)rl(z)n(t)

where H(t) is given in (3.1.7). Substituting for c gives

"f.t [3 ;], = c,(cr)i!(oz)ri(ot) and hence c(o,,t) = "t 
(o)H(ot).

Writing c(ct) for c, (n L) gir"" us the following result.

Proposition 3.2.12 LetE, H3 * C3 A" a harmonic function invariant

und.er a77 
[J ?] t"r o u 0K. rhen F has a Fourier expansion of the form

, ([t

We canno

characte
r -1, t0cro; 
I o

(3.2.13)

where:

(3 .2.1 4)

where now

(3.2.1s)

A1so, we

and tlt js the standard character (3.2.7).

Fourier expansions of the form (3.2.13) are special in two ways. First

of all, we assuned that F was invarianr under ll ?l for every c e 0*:
tu t)

that is, that the cusp at jo was of rwidth lt. More generally, if the

set of o such rhar F is invarianr under 
[J l] 

form rhe ideal h of

-1we must replace the inverse different 6 ' by the O*-module dual to

namely. {c 6 t< ; Tr(cl8) a Z for all g 6 h} which is just t-16-1.

we assume that 0K is a principal ideal domain, then h is principal,

generated by an element I say; and the Fourier series for F takes

F (2, t) = cO (t) * ofo*"(o)H(r-l''1-lot)u (l-lii-lo')

F(z,t) = co(t) * olor"(cr)H(n-lot)rl,(n-lor)
cO (t) is given bg (3.2. l0) ,'

c(cl) js a coefficient depending on a,;

H(t) js siven bc (1.1.7)

co(t) = J.F(tr2,t) d.z.
oK\ c

may consider Fourier expansions at other cusps.

oK'

h:

If

the form

A11 the
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'K-rational' cusps (sr0) for s s K are equivalent to j- under the action

of SL(2,0f rpro.rided that K has class number one. More generally, the

number of orbits of SL(2,0*) acting on Pr(K) = r u {j-} is equal to the

class number of K. If o e SL(2,0K) sends j- to the cusp s, and F is

invariant under a subgroup I, then F lo is invariant under all matrices

of the form p = o lyo for y € Is, where

I. = { Y e I : ys = s} ,

since ( (r lo) I p) (pl = (F lop) (p) = (F lyo) (p)

= F (yo(p) )J(yo;p)

= F (y(o(p) ) ) J (y; o(p) )J (o;p)

= (F lv) (o(P))J(o;P)

= F(o(p))J(o;p)

(eocycle identity)

(since y e I)

= (F lo) (r)

for P = (zrt). H". n.rt o:lf"o fixes j- "rrd 
so consists of matrices

of rhe form 
[; l]-: if the ser of o such rhat Flo is invariant under

[J ?] i, rr," ideal h = (t), rhen as before Flo has a Fourier expansion

of the forn (4.2.14). We now define this to be the Fourier expansion

of F at the cusp s. Its 'zerotht coefficient is given by

(3.2.16)
o*{c(F lo) (rz't) dt

This leads us to define aut.omorphic forms and cusp forms as fo11ows.

Definitioa 3.2.17 let K be a complex quadratic fiel-d with class numbet

one and ring of integers O*; Let I be a subgroup of SL(2,0*) of finite

index. Then an automorphic form of weight ? 19! I js a function
?

F : H3 * C" satisfging

(i) F is harmonic;

(ii) rly = F fotaTTYef.

If, in addition, for a77 o e SL(2,0K)

(iii) o{fc(F lo) (Iz ,t) dz = Q

and al7 t > 0, T satisfies

where (),) is the width of the cusp at o(j-) as defined

caffed a cusp form of weight 2 fot l.

above, tlzen f ;s
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Notes: (i) In this thesis only forms of weight 2 will be considered,

so from now on the qualification rof weight 2r will be omitted.

(ii) Cusp forms F for f correspond to harmonic differentials F.8 on

the quotient space-.which are zero at the cusps of f\nf.

(iii) Note that in the tr'ourier expansion (3.2.13) the argr:ment of H is

n-lot where 1,o e 0* and t e R, t > 0, whereas in (3.1.7) we defined

H only for positive real arguments. This abuse of notation is resolved

by (3.2.5) and the remarks following it: rre set

ti(."i0) = H(r) aiag(eio,l,"-io)

= (-+it2"i9r, (4nr) , ,2*o(4rr), 1ir2"-i0K, (4rr)).

(iv) The only part of the definition which depends on I itself is (ii),

the invariance condition. So if F is an automorphic form or cusp form

for I, and F is also invariant under another group I', then F is also

a form for fr.
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5:.9 Hecke operators

As with ordinary modular forms, we can extend the action of GL(2,C)

on functions, given by (3.2.3), to the group ring of gt(2,C); Hecke

operators will be defined by particular elements of this group ring.

Before we define them, however, we need to introduce some other operators.

Ler e be a unir of 0* and let r. denore rhe marrix 
[; l] The

action of I. on H, is to send (z,t) to (ez,t) since l.l = t. A1so,

-lJ(re; G,t) ) = diag(e,1,e ') and from (3 .2.4) ,

(3.3.1) (F lrs) (z't) 
= ,:,:::;lr"s(e,,,e-r).

We can also compuEe the action of Ia on Eourier coefficients:

has a Fourier expansion given by (3.2.13) then

(F lrE) Q,t) 
=

So if F is invariant under I.

(3 .3 .2) c (g) =

ifF

F ( ez, et)

co (e t)+ .,Eori,"rl,ui- 
lo. t;,p,r-'::r,

co(et)+ oEol(". 
')H(I 'crt)U(ii 'cr.z).

we must in fact have

c(qe)

foral1oe0K.

Denote by S(a) the space of all cusp forms for Ao (a) where a is an ideal

of 0*, and suppose E e s(a). Since [:' ?.l and [t o )

[u t) to ;-l J 
are ProjectivelY

equivalent they give the same transformation of Hr; but the latter is

in Ao (a) for every a; so ure must have ,1r., = p. Then by (3.3.2),

the coefficients of F satisfy

(3 .3. 3) e (o) = 
" 

(e2o)

for every unit e . O;. Also note that I, normalizes Ao (a) so that

FII is invariant under Ao(a) if and only if F is. So if es is are
generator of the unit groun Of, then Iro induces an involution of S(a)

which we denote by J and call the rmain involution' of S(a). Hence we

can split S(a) up as

(3. 3. 4) S (a) = S+ (a) o S- (a)



where J acEs as +l on

for F u S*("), rhe Four

so depend only on the i

-c(eocl) and this is no

Now suppose that K h

domain. Let P be a pr

we define the Hecke ope

(3 .3. s)

For a unit e . 0* we ha

r=r[1eT o ,,,od n[0

_ fr o) - lr= lo ',J ' [o

SupposeFhasaFourier

. F (z,r) = cO(t) +

Then (rl tn I (z,t) - I
B mod

:hat by (3 .3. 2) ,

= c(eoo), and

we have c (o,) =

number one so that 0* is a principal ideal

of 0" generated by an element T. Then

to be the transformation F -+ FlT, , ,her.

" i', ol * l', ol
_1, -to rl [o t)mod T[\ /

so that

s*(

'ier

dea

ts

.as

'ime

,rat

T-
,I

ve
g
ET

cr)

")
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d and

Coeff

r (o);

o.

class

ideal

orT ,IT

0,

ll+
)

as -l on S (a). Note t

icients c (cx,) satisfy c (cl)

whereasforFes-(a)

*1,
l0

len oJ

I o t)

0J [r 0)
r j [o rJ'

expansion of the forn (3.2.13):

-I -l

olo- " 
(o )H(n '0 t)U (n 'crz) .

,,;rh f] , (z,t) + ,q [[ t >r,,.r.

(3. 3.5) f=JTeoT T

Hence we cannot in general define an operato. r, for a prime ideal p,

sinee the definition may depend on the choice of generator for p.

Lernrna 3.3.7 I rs in S(a) then so is FlTn for everg prime el-ement r I a.

Proof: Condition (i) of Definirion 3.2.17 is automatically satisfied

by rll,, for every element L of the group ring of GL(2,C), if it is

satisfied by F. As for the cuspidal condition (iii): this is also

satisfied by flf,, for L in the group ring of GL(2,K), since F itself

vanishes at each K-rational cusp. So in this and similar results, it

suffices to show that F lL is invariant under the group concerned.

In this case, the proof of the fact that fl fn is invariant under

A,(a) provided that n I a is almost identical to the proof of the

corresponding fact for Io(N) in the rational case (c.f. Atkin-Lehner

;3 1 Lema 6) . The modif ications are trivial and so the proof will not

be written out here.
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Now from (3.2.4),

(Fl 
[J f],Q,t) -

and (Fl ll :,J, e,t) =

Hence tr lrn) Q,t) = I 11 ZI3-

$modn 'lI '

Substituting in the Fourier expansion

(F lTr) (z,r-) = N(n)cO

+

B

= c6(t)

ci (t) = N (n') 
"O 

{tr'- I ) +

(*)
c'(o.) = N(n)c(or) + c

(We use the convention that c(s) = 0 
'

Here we have used the fact that

(3. 3. 8)

Then substituting

, Tt).

-'"i,r,n-'#,

-lt)r!(n 'anrz)

I ot)rp(n-l0z) , say,where

,( '*B
TT

F(rz ,

fr

t
-l'Tr'

rr) .

+ F(nz

o e 0*.)

3) gives

co (nt)

Ic (o)tt(n
0

-l(o)H(n 'o,n

c'(o)H(n

n), and

(3.2. I

,t-(-) +
'tT'

I
mod ti

+ Ic
0

+I
0,

co(t

(o/n) .

unless

r ,p(n-lo3/n) = {*tn' 
if n I o;

gmodn t g if n,f o.

From (*) it follows that if F is.a cusp form then so is f lTn.

Suppose also that F is an teigenform' for Trr, so that Fli, = trnF for

some constant )._. Then ct (o,) = l_c(cx,) f or all o. Write a(cr) =1I ]I

N(o)c(q,) and a'(o) = N(cl)c'(o), so that (*) becomes

a'(o) = a(cx.n) + N(n) a(ulr).

o, = I gives

).na(l) = a(r)

"(rt*l) = trr, a(nr) - N(n)a(rr-l).

(3.3.8) gives a(on) = ln ,(o), and for r > 1,

"(ort*l ) = ).r, a(ont) - tq(r) t(ont-l ) .

In particular, if F is an eigenform for all the Trr, the coefficients of

F may all be computed in terms of the eigenvalues ).rr. Moreover from

(3.3.9) it follows by sinple inducrion rhar

a(l)a(snr) = a(s)a(rr) forn{o,

(3. 3. e) (i)

and for r 2 l,

Alsoifr{o,

(3.3. e) (ii)
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so that the coefficients become multiplicative if we normalize by setting

a(l) = 1. (Wecan do this because a(l) = 0 for an eigenform: this

fact is not trivial to prove-see the end of this section.)

For each prime tt' dividing the 1evel o there is an involution Wn,

defined just as in the rational case: 1et 1Ir be the highest power of

n dividing a and let IJ, be any matrix

(r'\
l'II x v I| '. 

I

loz nw)
where a = (cr) I then if F is a cusp form for Ao (a), so is FlwlT,

which is independl.ng of the choice of matrix chosen, and (Flwrr) lwn = r.

We finish this section with a suumary of soue results concerning

the action of the Ilecke operators on the space of cusp forms S(a), for

a an ideal of 0,,. They are all special cases of results valid for
K

automorphic forms over an arbitrary global fie1d, which can be found

with proofs in Miyake [l3 ], and are straightforward generalizations

of the corresponding facts about cusp forms in the rational case. The

proofs are very similar to those in Atkin-Lehner [ 3 ] and could have

been written out in fu1I here in the present context of a complex

quadratic fie1d, but this seemed unnecessary.

Sumtary of results about Cusp Eorms and Hecke Operators

with determinant lir

=[aJW,IT 'ITti

rf (rt) t (rrr) rhen ,*,rn, = ,n.,-trr.

If (rt) * 0rr) and nt, n2 | u .h"r, ,r,rn,
rf r', I a and n, | " .n", ,nrrn, = 

"n,tnr.
There is an inner prod.uct on S(a) such that each T- (T, I,, I I

each Wr, (Tr | .l is self-adjoint with respect to it. Ilence
,,2

a basis of S(a) consisting of forms which are eigenvectors, or

eigenforms, for all the Tn for r I a and all the Wn for 1I I a.

of such a basis always have their first coefficient a(l) r 0;

them so that a(l) = 1.

rr F e S(b) where b I " .r,",, r1[5 ?] € s(a) ror any

denote Uy so1d1a; the subspace generated by all such Fl

a) and

there is

Elements

normalize

kl.b

[t:]

-1.
,

for all
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b I a; th"r, Sold(a) is mapped to itself by all rhe Tn for r / a and

Wn for n I a, and we uay form the orthogonal complement Snewla) or sold(a)

with respect to the above inner product. This space Stt'(") is

spanned by the eigenforms, called newforms, which are not oldforms

(eleuents of sold(a)). so snewla) has a basis consisting of newforms,

which are eigenforms for all the Tn for tt ,f a and the Wn for r I a, and

have first coefficient l.

The algebra generated by all the Tn, restricted to Snewla), is

corrmrutative, semisimple, and has rank equal to dim(Snut(")).

The following result is deeper, and correspondingly harder to prove.

Theorem If F and G are newforms for Lo (a) and Ao (b) respectiveTg, then

and G have diffetent eigenvaLues foreither F = G and a = b, oz el.se F

infinitelg mang T- with n / ab.
1T
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53.4 Cusp forms, Ilomology, and Modular Symbols

If I is a discrete subgroup of GL(2,K) then denote by XI the quotient

topological space f \ H3, and Uy ff its closure hnl. In general X, is

not a manifold, because f may conEain elements of finite order; but if

I contains no such points, then Xa is a real analydic Riemannian manifold

(c.f. KurEanov t 8 l).

If I does have elements of finite order, let Ir < f be a normal

subgroup of finite index in I with no such elements. Then Xrr is a

manifold, and the finite quotient group T:= f/It acts on it. I,Je have

a nap

tr:Xfr-]*f

induced by the identity on Hr, and this induces maps

tr* : H, (f1, , Q) -> Ht (xil a)

and r* . ,l tx= e) -+ ul{fr, , e).

Lerura'3.4.I ro is surjective und n* is injective.

Proof: (c.f. [8] leuma l). In the case of homology, the set P,

ff - *f is f;rrite, and the set P, = {n(P) : p . Xf, is fixed bv T}

a one-dimensional submanifold of X, (c.f. 92.2). It is clear that,

given any path in X, we can find a homologous path lying entirely

within X,. : (e, u P.). If the path is closed, some multiple of ittlz

will lift to a closed path in Xp, since T is finite.
1--@

We have H'(Xf, , C) = 0/00 , where f,) is the space of closed C

l-forms of compact support on Xrr r arld Q6 is the subsp.: of forms of

the form dF where F is a function on X;r. If 0f "rd Aro' denote the

subspaees of [? and 0s consisting of forms which are invariant under the

action of Ti, then in (3.4.1) ttre image of ro is clearly OT I nf.

In the case f = Ao(a), 1et Xo(a) = *Ao("). K,rrlanov, in [8], proves

that the map

l-S(a) -+ tt'(xoGT , C) ,

F -) F.B ,

1S

given by



is an isomorphism.
+larger group Ao(a) :=

has class number one

J-

tAir (a) : A6 (a) I = 2

It(a) =

Hence on the right-hand side of

to forms invariant under (zrt)

side, one is restricting to the

section.
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In facL, KurEanov, and others, work with the

'[::] 
e GL(2'K) : c € a]' rn th€ case where K

the corresponding projeetive groups satisfy

since

[; l],"
isomorphism, one is

similarly, on the
*(") a"tined in the

a;(") u

the above

-> (-z,t) 
3

subspace S

restricting

left-hand

previous

Now there is an exact duality
I_II'(Xr, C) x H, (X1, , C) -+ C

given by (ar , y) -> J u
v

In this pairing the action of GL(2) on differential forms corresponds

to the action on homology induced by the action on the points of Hr,

since if cr < GL(2,C) and y is a path representing a homology cycle, then

Jr,.g = J{r.o).(Boo) = J{rlo).8y(cr) y y

by definition of F lo.

In this duality, restricting on the left to forms invariant under T,

that is to SZl /nf , corresponds on the right to factoring out by the

kernel of no. So we also have an exact duality between ttl {xa , C)

and llr(ff , c). In the case f = Ao(a), we can use KurEanov's

isomorphism t.o yield an isomorphism
t-s(a) Hl(xo(a) , c).

In the next chapter I will show how to compute V(a) t= Hl(ret,Q)

explicitly for any ideal a of 0* when K is one of the five Euclidean

fields. We will be able to compu- te explicitly the action of:

the main involution J1

the W* involutions for r I ";1I

the Tn for any n I ".
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It follows from the results of the previous section that we can find a

basis for V(a) with respect to which each of the above operators acts

with a diagonal matrix: this basis will be explicitly represented in

terms of cvcles on fo (a[. Old forms can be recognized, while the

coefficients of newforms can be computed from their Hecke eigenvalues,

as indicated in the previous section.

Modular Symbols l"lodular symbols are a convenient form of notation

with which to calculate the homology of spaces X, tor various subgroups

f. It seems appropriate t.o define them and give their basic properties

here, although we will not use them until the following Chapter. They

are discussed in the rational case by, for example, Manin in I t0] or

Lang in his book t 9 l. Kur[anov has also used them for complex

quadratic fields, in work relating to the Birch - Swinnerton Dyer

conjecture, for which they were originally invented by Birch.

Let A and B be two points in the extenied upper half-spac" ,; =

H. u K u {j@} which are equivalent under the action of I: so there3'
exists y € f such that y(A) = B. Then any smobth path from A to B in

H, nrojects to a closed path in the quotient space Tr = f \ t;, whose

homology class in H, (xf , Z) depends only on A and B and not on the

path chosen (beeause fff is simply connected). Denote this homology
J^

class by {A,n},, , or simply by {a,r} if the group I is clear from
I

the context. If we identify homology classes with functionals on the

space of differentials, then we may extend this definition to points

A and B not equivalent under I: denote by {ern} the real homology

class identified with the functional o + Il **, , where ul is a

differential on T, and e: Hl * x. is the natural projection.
IJ1

Modular symbols {ern} have the following properties, whose proof

is imrediate.

(i) {A,A} = o;

(ii) {a,n} + {s,A} = 0;

(3 .4.2)
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(iii) {e,n} + {s,c} + {c,A} = 0;

(iv) {vA,vn}a = {A,s} if y e r;

(v) {R,vn}, = {n,Yu}, if y e r, for any A and B i" nf;

(proof : {e,yn} = {A,B} + {s,ys} + {yB,yA} by (ii) and (iii)

= {A,n} + {s,yn} + {s,^{} by (iv)

= {s,ys} by (ii) ).

(vi) {a,va,}re tt,Q,z) if ver.
An elementary geometrical argument similar to the one used in the

proof of Le,nma 3.4.1 shows that any element of Hr q , 4 can in fact

bewrittenas {AryA} for somey e I, andA€Pl =Ku {5-1.

In the next Chapter we will see that in fact the rational homology

can be generated by elements of the form {y(0),Y(j-)}, for Y e SL(2,0*).
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q3.5 Periods of Cusp Forms

Recall that in the rational case, if f(r) =,r!t ,,'n"' is a

for Io (N) (so that a, = I and ,rt = arf for all p { u) with all

Fourier coefficients an rational, then in the homology of Is(N) \

there are two one-dimensional eigenspaces with eigenvalues "r, ,

with eigenvalue +l and one with eigenvalue -l for the conjugation

newform

its
&

H

one

involutiot z -> -Z; and that the periods of the'associated form 2rif(z),

integrated around the corresponding cycles, are the periods of an

elliptic curve uniformized by functions on Xs (N) , with zeta-function

--sIa n ". and this curve (conjecturally) has conductor N. For N < 330
n

the appropriate calculations have been carried out by TingleYr as

described in his thesis lZS1.

One might hope that in the complex quadratic case the periods of

the differential F.$, where F is a cusp form, might also be of interest

(c.f. Weil lZ4) ar.d IZS), last paragraph). Unfortunately, the symmetry

induced by complex conjugation in the rational case, which led to a

pair of periods being associated to each newforu, is not now availablel

although there is some sytrEretry between the spaces S+(a) and S (a),

defined in 53.3, as will be demonstrated in a later Chapter. However,

the Fourier expansions introduced in 53.2 do enable us to compute a

single period of a differential F.$, given sufficiently many of its

coefficients, fairly rapidly and accurately; so we record Ehe formulae

here, and in Chapter 5 will give the approximate periods for some of

the newforms given there in the tables.

First recall from the first section

function K^ satisfies the differential
0

rK6(r). + ri(t)
which can be writt.en

(3.s. l) -tKo(t)

of this Chapter that Hankelrs

equation

- tK.(t) = 0,

fr<tritt)) = fn<rr, (r))



since r, (t) = -K6(t)

Suppose that F (z,t) is given by a Fourier expansion (3.2.13) and we

wish to know its integral over some closed cycle y in xo6; by the

previous section, we can wriEe this cycle in the form {o,,j-} where o e K

is equivalent to j- under Ao(a). Choosing a vertical path from (or0)

,r_
to jo in H, , the dz a11d dZ components of B = (- +, +, {) ,"rri"r,,

giving [r. U = 6 r, (o,t){ where F = (Fo,Fr,F2). substituting

the Fourier expansion (3.2.13) for F gives

(3.s.2)

Since f, (t) becomes very smal1 very quickly

sum converges very fast: and the larger the

l,t.g = fi_,[ c(OrKo(4nln-Ll .>u(n-rEo)dt
' "r.oo

.l^ (. r el ,{,(n-r Eo) Il .ro (an In 
t 
r 1 

.> a.)
9'" K

= K-l^ (i[? {,(n-r e*> )r where
E.o*. , ,

K = Llll, [i t*o(t)dt
Gr)z )

is a constant. But although convergence of the above sr:m is assured by

rhe estimate c(E) = o(lEl-"1 for some a > O, in practice it converges

very s1ow1y. This can be remedied as fo1lows.

Let g e Ae(a) be such that g(j-) = cl. Then the cycle {o,j-} =

{g(j*),j-} can be represented by {g(p),P} for any P u H3, by property (v)

of (3.4.2). Since {g(p),P} = {g(p),j-} - {p,j-} it is enough to consider

eycles y of the form {prj-}. rf P = (qrto) where to > 0, then (3.5.2)

becomes

lrr.s = +# ,lrj.,Er 
lsl-2,i,<n-roE) o,tln], l.l"o(t)at).

But from (3.5.1), since f.(t) and Kr(t) decrease rapidly to 0 as t + @r

we have
J:, ffio(t)dt = -Eor, (te). Hence

Jr'e = CqF I.o*(',r, lEl-r't'<n-roE)Kr(4rlEn-r l',))(3.s.3)

(faster rhan e-t; this

value of ts, the faster it
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will converge, If g then it is best to take P = (- fo, f*tt,
l'arl_tt- 
{.nc aJ

where (N) = a, for then Q = C(P) = ,# , fur, so that in calculating

both the integrals, over {Q,joo} and {P,j-}rwe can take t = l*"1-'.
practice one has considerable choice in which matrix g to use: so one

chooses one with l"l as smal1 as possible.
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CHAPTER 4

Modular Symbols and the Calculation of Homology

In this Chapter, I will show how to calculate II, (G\H: , Q) where G is
IJ

a subgroup of finite index in A = SL(2,0*) and K is one of the five

Euclidean fields A(/-d) for d = 1,2,3,7,11. Some remarks will be made

at the end about how to generalize the procedure to the other fields with

class number one (d - 19,43,67 and 163) and the fields with class number

greater than one.

The main features of the algorithm are idenEical for the five fields,

although there are of course differences in detail. The algorithm is

an extension of the one given by Manin in I t0] for subgroups of the

modular group SL(2,2) which I will describe briefly in 54. l: I will

borrow some of Manints notation, but present a somewhat sirnpler version

of the proof. Then, in 54.2, I talk about the algorithm for

the five Euclidean quadratic fields, giving the plan of approach which

will be cotnmon to the five fields. The five fields are then dealt

with in turn. The geometry developed in Chapter 2, and in particular

the fundamental regions described there, will play an important part

in this discussion.

94.1 Review of the Algorithu for subgroups of SL(2,2)

Let G be a subgroup of finite index in I = SL(2,2); we wish to
-*

calculate Hl (G\H , Q). As a fundamental region for I on H we will

use the triangular region F with vertices at i@, 0, and p = iO+/-3)
(see Diagrarn 4.1). the {0,i-} edge of F is self-identified by S =

[? J]. (The orientation is reversed: s interchanges 0 and i- while
(, llfixing i). The orher edges are idenrified by TS (recal1 T = l; il ,

(t -r)so that TS = li rl ) which fixes p and maps 0 + i- + I -+ 0. So
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Diagran 4. I

the transforms of F under {f ,TS,(TS)2} cover a larger triangle F+ \"rith

vertices at ico, 0, and l. (See Diagram 4.1).
k

Write I = ,1J, Gy, where {y, } .,1, is a set of right coset rep-
J=I 'J 'J J=I

resentatives for G in I. Then a fund.amental region for G in tf i"
k

given by ,-U, y,F since c( tY,F) = U(Gyr)f = ;f = li. Also the
J=I 'J 'J 'J

tesselation of the upper half-p1ane with the transforms of F clearly

gives a triangulation of G\H* under the natural projection tI * attf.

So one could calculate the homology of e\H* by taking as generators the

three edges of Y.F for each j = I ,2,... rk, and relat.ions of two types:

one type recording that the sum of the three edges of each y.F is zero,

and the other recording the tgluing togeEher' of adjacent y.F. Ilowever

it is simpler if we unite the Y.F in sets of three as in the diagram:

ler F+ = F U (TS)F u (TS)2F so rhar F+ has edges {0,i-}, {i-,1} =

its(o), TS(i-) ], and {1,0} = {(rs)'(0), (TS)2(i-) }. Then.we can forger

about the inner edges entirely, and take as generators the single edge

{y.(O),Y.(i*)} for each coset representative y.; relations of the first
JJJ

kind

{y.(0),Y.(i-)i + {y.(i-),y.(l)} + {y.(1),y.(0)} = Q
JJJJJJ

for each coset representative Y.; and relations of the second kind
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{v, (0),v, (i-) } + {vr 1i-),v. (0) } = 0'

Writing (y) for the edge {y(0),Y(i-) }C these can be written concisely as

(4.1.r) (i) (y) + (yrs) + (y(ts)2i - 0;

(ii) (v) + (ys) = 0.

If Gy = GYTS then (i) is to be interpreted as (Y) = 0, and similarly

if cy = GyS then (ii) is to be interpreted as (y) = 0: this is because

we are calculating the rational homology, whieh is torsion-free.

Writing [o,] for the equivalence class of cusps modulo G containing

q, e Q u {i-}, we can write the boundary rnap E from the space of l-cycles

to the space of 0-cycles as

G.1.2) a(y) = [y(i-)] - ty(O)l ,

extended by linearity.

Hence we have the following result.

Theorem 4.1.3 Form the Q-vector space with sqmbols (y) -" basis, for a

compTete set of coset representatives "( of G in T, moduTo aff reLations

of the form (4. 1. I ) (i) , (ii) . Let H(G) denote the kerneT of the

homomorphjsm 3 (defined bg (4.1.2) and extended bg Tinearitg). Then

the map

(4. I .4) (y) * {v(0) ,y(i-) }e
*

gives an isomorph:sm from H(G) to H, (G\H , a).
I

Note: The boundary map E is well-defined since each of the relations

(4.1.1) has rboundary 0r; that is, E(y) + E(yS) = g and

3(y) + E(yrs) + E(y(rs)2; = 6.

Notice that we are generating the homology entirely by paths whose

end-points are cusps: more strongly, we are only using paths of the

torm {y(0),y(i*)} for y € f. In fact there is a simple way of expressing

any path between cusps as a sum of such paths. It suffices to do so

for paths of the forn {0,f} for i. n, a fractiorr in its lowest terms.

Write dotm the continued fraction convergents of 9
b
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Then, as is well

'k

Then

(4.1.s)
n x-r{0,*} = J {-' 'b- tl_r , bk_l

n

I {y,, (o) ,y,- (i-) } ,
--N^t,-- I

as required.

This device is important in the actual compuLations, since we have

a definition of various operators (Hecke operators T, , and involutions

of various kinds) defined on points, and hence on homology and modular

symbols {arn}a , but not directly on the symbols (y); so we need to

pass from one to the other, and this is achieved by (4.1.4) and (4.1.5).

Two other ingredients are needed in order to make Theorem 4.1.3

into an algorithm: r{e need to give a set of coset represenEatives for

G in f (and to determine to which coset any particular element of I

belongs); and we need to decide when two cusps are equivalent under G.

This will now be done explicitly for G = Io (N).

Manin [to] tt.r.s a set of syubols, which I will call M-symbols,

which are in one-one correspondance with the cosets of fs(N) in f, as

fo11ows. Consider the set of all ordered pairs (c,d) where e,d e Z

and h.c.f . (c,d,N) = 1; call two such pair" (cl,dr) and (cr,dr)

equivalent if there exists u e 7 with h.c.f.(urN) = I such that

"l = t"2 and d, = .d2 (mod N); denote the equivalence class of (c,d)

by (e:d) and the set of such classes by pl (N) (ttre 'projective line'

over the ring Z/(u) ). we can map I * pl (tl) as follows:

(4.1.6) f"tl + (c:d).
lc dJ

A simple computation shows that this map is constant on right cosets of
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Io(N) in I. It is surjective, since given c,d in 7 with (e,d,N) = I

there exist a,b in 2 such that ad-bc i I (nod N); by (2.5.1) we can

find a'rbtrct and dr congruent to arbrc, and d (mod N) respectively,

such that atdr - brcr = l; and then (ct:dt) = (c:d) is the image of
[a' b' I
l;, ;,,J A similar argument shows that the map is injective.

Moreover, the nap (4.1.6) preserves the right coset action of I on

the coset space [I:G] provided that we define

(4't '7) ("'u) 
[: :] = (gp + dr : cq + ds),

since [" ul [n e I = ['P * 6t aq + bsl
[" u] [.r "J 

- 
[cp + dr cq + dsJ

for it :l e I. This makes M-symbols very easy and convenient to work
I.r SJ

with: as in the above proof we can always assume of a syubol (c:d)

that (crd) = l; then if a and b are any integers such that ad-bc = l,

we may identiry ,:,1),irn r|,i]. = {[: l],0, , [::](i-)], and so

E((c:d)) = f+l - fgl Nore rhar a is only derermined mod.ulo c-andLcl Ldl
b modulo d, so that the fractions I ,"a I are only determined modulo

inregers: this is consisrenrrsince Is(N) always conrains jJ l]r""
that cusps whose difference is an integer are equivalent modulo Io(N)

for every N.

In terms of M-symbols, conversion formula (4.1.5) reads
n

{o , ;} = u=;-r (bt: (-r)k-'oo-,)

Note the alternating sign, and also that only the denominators of the

successive convergents appear in the formula.

As for equivalence of cusps, we have the following result.

Proposition 4.1.9 tut\t , \Z e e be written in their Lowest tezms.- qt az
Then the folTowing are equivaTent:

(i) There exrsts y e fo(N) such that y(+17 = !2,' ql q'2

(ii1 
"192 = "2el 

(modulo (e,Ar,N)) wher" pj"j = I (modulo O,l tor i = 1,2.

Proof: For j = l12 choose r. and s. such that p.s. - r.q. = 1; then
(_ \ J J ( 'J { J'J

yr= 
l3l -:ll e I and ,,(il) = 0, while y, = i-:i'rll . r and yr(o) =

(4. I .8)



L2 . Anv element inq2

and we can ignore the

snme transformation as

to P2 i"
9"'z [r o)

Yz l" r jYr

and thus (i) holds if

(4. l. 10) *er92

for x, which is if and

Note that (4. l. l0)

decidable at a glance,

has rhe rorm 
[J* f] ,,o,

of minus signs since l-l
So the general elemenE in
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I fixing 0

possibility
Iro)
L-" r,l'

soue x e Z,

?] gives the

I sendins Pl" ql

=f * ol

t*qteZ * "192 - 91"2 *) '

and only if we can solve the congruence

* 
"192 - 91"2 = o (modulo N)

only if (ii) holds.

iroplies that (N,9t ) = (N,qz) so this condition,

is necessary tor |t ana !Z to be equivalent.ql q2

94.2 The Algorithm for Complex Quadratic Fields: Comron Features

In this section Awill denote SL(2,0*), where K is any one of the

fields O(/-d) for d = l, 2,3,7, or ll, and G will denote a subgroup

of finite index in A.

Our plan for each field is as follows: choose a fundamental region

F for the action of A o, ffl, wirh {0,5-1 as one of its edgesl form a

larger basic polyhedron by taking the union of the transforms of F by

a finite subgroup G, which stabilizes a vertex P of F (compare Diagram

4. I where the vertex p is stabilized by the subgroup of order 3, generated

by TS). In the simplest cases the only edges of the basic polyhedron

F will be the transforms of {0,j-}, one for each element of the finite

group Gr. I.Ie will have f face relationst to replace (4.1.1) (i), usually

of Ewo types; and'edge relations'to replace (4.1.1)(ii), to record

the juxtaposition of the transforms of the basic polyhedron: these

latter relations can clearly be found by considering the transforms which

share the edge {Or5-1. Then a Theorem similar to 4.1.3 will ho1d, for

G a subgroup of finite index in A, with those new relations to replace

(4. 1 . I ) (i) , (ii) , between symbols (y) corresponding to the edge {y(0) ,y(j-) }



for each coset representative y of G in A. The boundary rnap 3 is given by

(4.2.r) a(y) = [Y(j-)]-ty(o)l
where [a] now denotes the equivalence class of the cusp o e K u {j-}

under the action of G.

As before we can express any path {s,8} between cusps s and B (in K)

as a sun of paths of the form {y(0),y(j-)}, using the continued fraction

expansions of o, and $. We can do this because K is Euclidean, so that

foranycr< KthereexistsE.0Xsuchthat lo-El. l,where | |

denotes ordinary complex absolute value; hence we can define finite

continued fraction expansions for elements of K just as for rationals.

The successive convergents have the same properties as before, and the

analogue of (4.t.5) clearly ho1ds.

The definition of M-synbols as coset representatives for the particular

subgroups As (a), where a is an ideal of 0", generalizes with no difficulty:

we let pl(.) be the set of symbols (c:d) where c,d e 0* and (c,d) + a =

0f , with (cr:dr) = (c2:dr) whenever there exists r.0K such that

(u)+a=o*;

cl - uc2 , dl - ud, e a.

Then (4.1.6) gives a map fromA to Pl(a) which induces an isomorphism

of right A-spaces from [A:As (a)J to Pl(a), where the action of A or, pl (a)

is again given by (+.1.7).

The condition for cusps to be equivalent under Ao (a) is slightly

stronger than (4.1.9)(ii) when 0* contains rextrat units, namely when

K = Q(/-t) or o(/-3). For, the general element of A fixing 0 is now

(u0'lt- - ,t *
l* "-iJ where u e 0*. This last matrix has the s:me action as

Iu2 o]

L; il . rnspection of the proof of (4.1.9) now yields

Proposition 4.2.2 zetLl, \Z . K be written in their Towest terms.ql qz

Then the foTlowing are equivaLent:

(i) There exjsts y eAo(a) such that y(91) = L2 ;

(ii) There exjsts. . ol such that 
ql q'2
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"192 
i u2sr9, (modulo (ercr) + a)

where pk"k = I (modulo (CO)) for k = 1,2.

Note: rf K r a(/-l),0(/-3) rhen u2 = I for all u . of, "o that condition

(ii) nay be replaced by the simpler

(ii)' 
"t92 = "2{l 

(modulo (s,er) + a).

If K = a(/-t) then u2 = +1, and if K = a(/-3) then u2 = l, 0J, or u)2 where

ur = l(-t + /-3).

The main involution J of 3.3 is given by

(4.2.3) (y) * ([;-' lJr[; :])
which in terms of M-synbols becomes

(4.2.4) (c:d)-+ (ec:d)

where e is a generator of the unit group O;. To calculate the action

of the Hecke operators and W-involuEions we first convert to modular

synbols vLa (4. I .4):

(4.2.5) (y) * {y(o) ,y( j-) }.

For the Hecke operators Tn, where n is a prime element, we then use the

formula

(4.2.6) rn,{cr,B}*- I..{"+l ,g#} +{no,ng}
E nod (r)

obtained from (3.3.5). Similarly from (3.3.10), for the involution Wn

we use the formula
rr^

(4.2.7) wn , {o,B} -} {Ta , ry+-}
Nzo,+ntr' Nzg+nrr'

where a = (N), and r is the highest power of n dividing N, arrd x,y,z,

and w are chosen so that

,2'or, - Nzy = fir.

Lastly we reconvert all the modular symbols appearing on the right of

formulae (4.2.6) and (4.2.7) to linear combinations of M-symbols, via

(4.1.8).

Let V(a) = H,(Ae(a) t Hl , ol.

the eigenvalues of J as

We can decompose V(a) according to
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V(a) = v*(a) o v(a)

where J acts as +l on V+(a), and as -l on V (a). Now as abstract

vector spaces we have

v*(a) = v(a)/v-(a)
and V (a) = {x-xJ : x € V(a)}. In practice it is often convenient to

ealculate V*(") in this way, by including extra relations of the form

(4.2.8) (Y) = J(Y)

or, in terms of M'symbols,

(4. 2. 8) ' (c:d) = (ec:d).

The advantage is that by means of (4.2.8) or (4.2.8) ' we can halve the

nr:mber of syubols we have to work with, which means that the tiue Eaken

for certain stages of the calculation is reduced by a factor of four;

the amount of space is also reduced, which can be an important consider-

ation when Na is 1arge. A1so, by means of (4.2,8) we can often simplify

the other relations, thus saving time again. This will be seen in

particular cases in the following sections of this Chapter.

Care must. be taken in calculating 3 under this scheme: since 3 does

not annihilate all of V (a), it does not induce a well-defined map on

the quotient V(a)/V-ia). However, a momentrs thought shows that we can

avoid this by calculating the kernel of E + E.l instead of E, since

the map I + J projects V(a) onto V*(").

Similarly we can calculate V (a) as V(a)/v*(r) if we include the

extra relations

(4.2.9) (v) = -J (Y) , or

(4.2.9) (c:d) = - (ac:d),

and restrict to the kernel of 3 - 3.1 instead of the kernel of 3.



94.3 The Algorithu for Q(/-l)

Let i = /-t and A = Sl(2,ztil). Recall from 52.4 that S = |? -"

- t'rrJ r,tri 
=:tl'"lo'i., 

- 
"''rL*eLs-u 0,J'

r = 
l.o ,j, , = ll i] '"u * = 

[? ;l we replace halr rhe rundamenral

region D given there by its image under S to get a fundamental region F

for A which is spike-shaped (see Diagram 4.2) with vertices at 0, o, and

at three poinrs on the unit sphere: Pl = (l ,Ori,/3), P2 = 11,1,1/2) and

P3 = (0,1,i/3). The lower curved faces are parts of spheres, and they

meet along a courtron circular arc between 0 and Pr. The stabilizer of

edge PrP, is of order 3, generated by TS. The stabilizer of edge PrP,

is of order 3, generated by UR. The stabiLizer of P, is the group G,

= (TS,UR> of order 12 (sketch proof below): so 12 transforms of F meet at

P2. The union of these 12 forms the tbasic polyhedron' F+ which is a

(hyperbolic) octahedron, with four vertical f.aces meeting "g - 
(each

subdivided by the edges of F and suitable transforms of F in the manner

indicated in Diagram 4.1) and four curved faces meeting at (1,1,0). A

sketch of F+, and a plan of its projection onto the rfloort are given in

Diagram 4.3. So there are twelve edges: four vertical half-lines

rneeting at -; four semicircles of diameter I in vertical planes, joining

the vertices 0r 1, l+i, and i; and four semicircles of dlameter l/2

meeting aE l(t+i). These edges are precisely the images of {0,-} under

the action of Gr.

Sketch proof: In order to determine the stabilizer of P, one proceeds

as forlows. Th (l/z ltt+i)l

uhr.1a ir -,,,.;,T ."", ir: ."".:,"1 T:"r"::,i :;":.;.'1"'.,-;r,:;wIIr re lo L/, I
fixing j has the form [::l ; so the general element in GL(2,C)

t-v-oJ
fixing P, is

lllz i (i+i)
[o r

_g 1r+i)

L/z

[ " .,1 (tt__tt
[-v uj [o



j@ +

DLagram 4.2

Diagram 4.3

Plan:

11r+i)
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I i"/z - 1v1r+i)
=l l-t

i/2(i - u)(l+i)

}v1t+i) + t2r)

* l;(t+i)2 + l"l
tzi )

The conditions that this matrix should 1ie in SL(2,0*) are firstly that

the entries should be in Zli), and secondly that the determinant should

be 1. This second condition is l(l"l'* l"l2; = t. The first

certainly inplies that v e LliJ, and then also (by considering the upper

left entry) that w e zlil where w = (i- l)il /2. so we need to look at

pairs of Gaussian integers (w,v) such that lrl' * lul' = z. Clearly

we musr have (l*lt,l"l') = (2,0), (1,1), or (0,2). This eventually

leads to 24 pairs (w,v), and hence 24 elements of SL(2,Ztil) which fix

Pr, or 12 elements of PSL(2,Z[i]): they form the group (TS,UR) as

stated above.

To determine the shape of the basic polyhedron, one first calculates

the vertices of the 12 transforms of F under the action of Grl then

one glues together those transforms with a face in coumon; lastly' one

ignores inLernal edges and vertices (as in Diagram 4. I where three

transforms of the triangle F are glued along conmon edges, and then the

three internal edges and. the vertex p are erased to give the larger

triangle F+).

Sirnilar computations have to be carried out for the other four fields:

in subsequent sections, all such details are omitted for the sake of

brevity.

*
So t.o generate the l-homology of the quotient space of H, by the

aetion of a subgroup G of A, we take a symbol (Y) representing the path

{V(0),y(-) } for each matrix y in a set of coset representatives for G in

A. Relations between these are given first by the boundaries of the

triangular faces of F+ and its transforms: these are of two types:

(4.3. l) (i) (y) + (yrs) + (y(rs)2) - 0;

(y) + (yUR) + (y(un)2) = Q.( ii)
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Secondly, observe that four eopies of F+ meet at the edge {0,-1: its

images under I and RS (with orientation preserved),'and under R and S

(with orientation reversed). This gives relations

(iii) (y) + (yR) - 0;

(iv) (y) + (yS) = Q.

The other relation, (Y) = (YRS) , is a consequence of (iii) and (iv).

The bound.ary of (V) is given by (4.2.1). So we have the following

resul t.

Theorem 4.3.2 Form the Q-vector space with sgmbo,Ts (y) as basis, for

a compTete set of coset representatives \ of G in L, rpduLo all reTaxions

of the form (4.3.2)(i),(ii),(iii), and (iv). ret H(G) denote the kerneT

of the homomorphism E defined bg (4.2.1) and extended bg Tinearitg. Then

the map

(y) * {v (0) ,v (j-)},
gives an isomorphism from II(G) to Hl(c\Hi, nl.

Note: The boundary rnap 3 is well-defined because each of the relations

(4.3.1)(i) - (iv) has boundary zeroz this is clear since TS permutes

0, -, and I cyclically; UR permutes 0, o, Bod i cyclically; while both

R and S interchange 0 and *.

In the case G = Ao (a) we can use M-symbols as coset representatives.

The relations become

(4.3.3) (i) (c:d) + (c+di-c) + (d:-c-d) - 0;

(ii) (c:d) + (ic+d:c) + (d:ic+d) - 0;

(iii) (c:d) + (d:c) - 0;

(iv) (c:d) + (-d:c) - 0.

Notice that (iii) and (iv) together imply that (c:d) = (-c:d) for all

syubols (c:d).
*

Let V(a) = H.( Ada)\{^ . o).I 5'

Theorem 4.3.4 Form the Q-vector

elements, for each (c:d) e pl(a), moduLo a77 reLations of the

(4.3.3) (i) , (ii) , (iii) , and (iv) . Let H(a) aenote the kerneL

Then Theorem 4.3.2 becomes

space with sgnbo-Zs (c:d) as bas:s

form

of the
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boundarg map E, where

(4.3.s) E(c:d) = [."] [.t] ,

extended bg Tinearitg. Then

(4.3.6) (c:d) '+ {9.3}'d ' c'
gives an isomorphjsm H(a) '> V(a).

Note: In (4.3.5) and (4.S.6), a and b are any numbers in 0* chosen

so that ad-bc = I (recall that in any symbol (c:d) we may assume that

c and d are relatively prine).
li o)Let I. = l: : l. Then we have the relations1 lu t)

and

-1r. 'sr. =11
-tI.TSI.' =11

R

UR,

so that J sends relations of the form (4.3.3)(iii) into relations of the

form (4.3.3)(iv), and relations of the form (4.3.3)(i) into relations of

the form (4.3.3)(ii). Ilence if we follow the rshort cutf scheme of 94.2

and introduce either the relation

(c:d) = (ic:d)

(for v+(a)), or rhe relarion

(c:d) = -(ic:d)

(for V (a)), then we may omit relations (ii) and (iv) altogether,

leaving us with just three types of relation:

(4.3.7) (i) (c:d) = l(ic:d);

(c: d) + (-d: e) - 0;

(c:d) + (c+d:-c) + (d:-c-d) = Q.

(ii )

(iii)

Notice that the latter two are simply the trational relationst used

in 54. l, coming from the relations S2 = (tS)3 = I of the roodular group

SL(2,2). So the relations we have to apply to the symbols consist of

the tordinaryt modular relations, from 52 = 1tS)3 = I, with some additional

relations. Suppose that the ideal a is generated by an element a+bi e Z[i]

with h.c.f-(a,b) = 1. Then Z[i] /a = Z/(a2+b2), and so p1(a) = pl(a2+b2).

Ilence in this case nf (Ao(a)tnf ,ol is a quorienr of n]fro (a2+b2)1tt*,e;:
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here the first superscript t+t denotes the homology invariant under the

main involution (z,t) -+ (iz,t) , while the second denotes the homology

invariant under the conjugation involution z '> -2. This is because

the latter involution has the effect (c:d) + (-c:d) on symbols, and

our relations' (4.3.7)(i) imply that this action is trivial. So we

have the following result.

Theorem -LetN eZbeexpressableas asumof twosquares, N= a2 *b2,

with (a,b) = 1. Let a be the ideaL ot Zli) generated bg a+bi. Then

aiu s+(a) < diro slfro(N)).

Notes:(i) The condition on N is that it should not be divisible by 4

or by any prime p = 3 (mod 4).

(ii) The inequality is in fact very weak: examination of the results

of computations of dim S*(") given in Table 5. l. I shows that the smallest

N for which dirn S+((a+bi)) > O is N = 65, whereas dim SI(OS) = S.

(iii) Similar remarks will hold for the other fields considered in the

thesis: in each case, the relations between symbols will be obtained by

adding one or more types of relation to the 'rational' relations.

We can sum up the results of this section in the following.

Theorem 4.3.8 Form the Q-vector space with sgmbols (c:d) as basis
I

elements, for each (e:d) e P'(a), moduTo a77 relations of the form
+

(4.3.7) (i) | (ii) and (iii). I-et H-(a) denote the kerneT of the map

+
D-, where

+
D=(c:d) .= 0(c:d) t E(-e:d) = [:] [:] 

.

extended bg Tinearitg. Then

(c:d) -) {: , :} . {+ , lt
gives an isomorphjsm Ht(a) * Vl(r) . rt is understood that one choice of

sign is taken consistentTg throughout.

[-"1 - [-u l
L;J - L-] ,
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94.4 The Algorithn for Q(r/-3)

Let p = i(1+/-3) and 6 = 0-l = l(-t+/-3). Reca11 from 52.4 that

A = sL (2,27p1) is generared by s,r,u = [j l] 
and R = [?,S]. rr will

be convenienL to consider, as well as A, Ehe larger group At =

f [: 3] : a,b,c,d e Z[p], ad-bc = !1] so that A' = A , f; ?]^. Note

rhat the projectivizarion I' is rhe whole of pGL(2,Ztpl) since rhe

sroup of unirs modulo squares, {/(ol)' , has order 2 and 
[; ?] ties

in the nontrivial coset. A fundamental region for A' is given by

cutting the region D of 92.4 in half; if we then replace half of this

by its image under S, we obtain a fundamental region F for A' with

verrices ar 0, -, pl = ((l+p)13,/(2/3)) and p2 = (L,o,L/l) (see Diagram

4.4). Let P, = ((2f1)/3,/(2/3)). Then the edge P,P, is stabilized

as usual by (IS), of order 3, while edge PrP, is stabilized by (V) where

V = TU'*r*, also of order 3. Vertex P, has stabilizer Gp = dS,V>

which is of order 12, and is contained in Asince detV = detTS = l. The

12 transforms of F under G, thus all have a vertex atPr; they fill out

a tetrahedron F+ with vertices at 0, l, - and p (see Diagram 4.4). The

six edges of F+ consist of Lhree vertical half-1ines from c" to 0, l, and

gr and three semicircles in vertieal planes joining 0, 1 and p. Each

edge belongs to precisely two of the unit celIs (transforms of F) and

is the transform of {0ro} under the corresponding two elements of Gr.

This redundancy of edges will be reflected in certain extra relations

among the symbols 1ater.

So to generate the homology of G\Hl where G is a subgroup of finite

index in A we require a symbol (y) for every matrix y in a set of coset

representatives for G in A' , representing the edge {y(0),y(-) }. The

redundancy observed iurnediately above is recorded in the relation

(4.4. 1) (y)+(yR)=Q

since R interchanges 0 and *. There are two types of'face relationr,

namely

(4.4.2) (v) + (YTS) + (y(TS) 2) = o, and



Diagram 4.4

Plan:

I
I
,
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(4.4.3) (v) + (yv) * (yv') = O.

The edge relations record which transforms of F meet at the edge {0,-},

and are generated by (4.4.1) and

(4 .4.4) (v) - (yrp)

l,o o]where rp = [o ,,J.

Now if {vr}f=l i" a set of coset representatives for E in f, we can

obtain a set of representatives for E in A' by taking {vr}f-, u trotvr}f-,
Write y+ fo. y and y for fOlV; then (4.4.1) - (+.4.4) become

(ii) (yt) + lylrs) * (y=(TS)2) - o;

(iii) (y1) * (y1v) * (ylv') = o;

(iv) (yt) = lytro).

The involution J induced by conjugation with IO ean be written

(y) * (r^lyr^)
IJ TJ

so we have .r(y*) = (y-ro)

and J(y ) = 1y+to);

using (iv) we get

t(y*) = (y-) ; J(y ) = (Y*).

Also, rllrsr^ = V, so that each relation of type (iii) is obtained by'pp
applying J to a relation of type (ii). Hence if we impose the extra

relations

(v) = .i (y)

or (V) = -.1(Y)

we can dispense with the (y-) symbols and with relations (iii) and (iv).

I,rIe can also replace (i) with

(v)+(ys)=0
since RS = I1 which by (iv) acts trivially. So much simplification is

p

gained by calculating the eigenspaces for J separately, and we have the

following result.

Theorem 4.4.5 Form the Q-rzector space with sgmbols (Y) as basis, for a

compTete set of coset representatives y of G in L., moduTo a77 rel-ations



of the form

(i) (V) = t(ylo);

(ii) (y) + (ys) - 0;

(iii) (V) + (yTS) + (y(ts) 2) = Q.

+++
ret H- (G) denote the kerneT ot b- = 0 I EJ. Then H- (C) is isomorphic

to the eigenspace of Hr(G\H;,Q) on which J acts as tl.

Of course when G = Ao (a) we can use M-syubols as coset representatives

for G in A. Relations (4.4.5) (i) - (iii) become

(i) (c:d) = i(Pc:d);

(ii) (c:d) + (-d:c) - 0;

(iii) (c:d) + (c+d:-c) + (d:-c-d) = Q.

The adjusted boundary operators 3t have formulae

E,((c:a)) = [:] [3] 
, ([-] [+])
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54.5 The Algorithm for Q(/-2)

Let0 =/-z andA=sL(2,ztol), andseru= [; l]. LerA,=A, 
[l?]^

be the larger group of matrices with determinant tl. It follows from

92.4 that a fundamental region for the action of A' o, Hf is the spike-

shaped region F with vertices at 0, -, Pl = (L,t/3), rz= (l(t+g),|), and

P3 = (Le,L/2). As usual, edge PrP, is stabilized by <TS>, of order 3.

Now PrP, is stabilized by a grouD of order 4 generated by USI_I (which

has determinant -1). The frr11 stabilizer of P, is thus <TS,USI_I) which

has order 24. Tine 24 lransforms of E under this group G, each have a

vertex at P2 and fit together around Prto form the basic polyhedron Fr,

which in this case is a cuboctahedron (with six quadrilateral faces and

eight triangular faces). For a pieture of F+ and a projection onto the

floor, see Diagram 4.5. The 24 edges are the images of {0r-} under Gr,

precisely one to each transform of F. So as in the case of S(/-:), to

generate Ehe l-homology of C\Hf for a subgroup G of A or A' we loust use

symbols (y) for each matrix y in a complete set of coset representatives

for G in A', corresponding to the edge {y(0),y(-)}. As face relations

we have: for the triangles,

(y) + (yTS) + (y(ts) 2) = 0,

quadrilaterals,

(v) + (yusr_,) + (y(usr_,)') + (y(usr_t)3) = Q.

relations: four copies of F+ meet at {0r-1, nauely its

I ,, S and SI ,, giving us the relations
-t -l

(y) + (ys) - 0;

(y) = (yr_r).

convert the syurbols and relations in such a r^Iay

of coset representatives for G in A. t et {y} be

y and Y = r-1Yr so trrat {Y*} u iy-} is a set of

'G in Ar. Then relations (4.5.1),(4.5.3) become

+ lytts) * (yt(TS) 2) = Q

(yt) * (yts) = o,

(4.s.1)

and for the

(4.s .2)

As for the edge

images under I,

(4.s.3)

(4.s.4)

As with A(/-3) we can

as to involve only a set

such a set, and I.t y* -

coset representatives for
+(v-)

and
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or

and

while because

hence (4.5.4)
!(y-) = J(y+)

while (4.5.2) becomes

(y) + (yus) + (y (usr_ 
I 
us) )

70

++(v-) + ( (yrs) -) +

++(v-) + ((ys)-)

I has det,erminant -l we
-l

becomes

-0

= (r ,yTr ,) = J(yl;
-l -l

( (y(rs) 2) t)

- 0;

have (y1t , )
-l

+ (y (USI-, ) 
2uS) = Q.

As before, we can simplify considerably by assuming that J acts as a scalar

tl; that is, by including extra relations (y) = iJ(Y). The result is:

Theorem 4.5.5 Form the Q-vector space with sgmbofs (y) as basis, for a

compTete set of coset representatives y for G in L,, modufo aL7 teTations

of the form

(i) (Y) = t(YI-, ) ;

(ii) (v) + (ys) - 0;

(iii) (v) + (YTs) + (v(ts; 21 = o;

(iv) (v) + (yus) + (y(usr_l)') + (y(usr_,)2us) = Q.

+++
-Let H:(G) deaote the kernel of D- = 3 I 3J. ?hen H-(G) is isonotphic to

the eigenspace of HrfCfHl,Q) on which J acts as 11.

In terms of M-symbols, when G = Ao(a), the relations are

(i) (c:d) = t(-c:d);

(ii) (c:d) + (-d:c) - 0;

(iii) (c:d) + (c+d:-c) + (d:-c-d) - 0;

(iv) (c:d) t (Oc+d:c) + (-c+0d:Oc+d) t (d:c-Od) - 0;

the adjusted boundary maps ai h"r" formulae

E,(c:a) : [:] t:] = (l-] l+])
The reason for the. alternating signs in (iv) above is the

computational convenience we wish to express the terms in (iv

of a single matrix USI_I; but USI_I has determinant -l; so

following: for

) as an orbit

if ad-bc = I

then

[::] 
,',-, - 

[::* :]
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where the matrix on the right-hand side has determinant -l; now

according to (4.2.5) the latter corresponds to the path {:,#i.

Ilowever, the syarbol (Oc+d:c) corresponds to {:,;5ft.} where

yc - x(cO+d) - *1, so that we rnay take x - -a, and y = -(a0+b), and then

taaO+b.r-x-vr
'c'cO+d"c'cO+d'

trt A Y lr-tt c ' c0+d "

+r x Y 1,-t c ' c0+d '

according to which sign we have chosen in (i).



94.6 The Algorithn for Q(/-7)

Ler o, = l(t+/-l) and A = SL(2,2[o1), and ser U =
( -1wi.1l have to consider the larger group At = A u 
Ir0

gave a fundamental region for A, consisting of poin

a) l"l' * * > l, so that (z,t) is outside the uni

b) z is inside the rfundamental hexagonr of points

nearer to 0 than to any other element of Z[cx.] (see.

-2+a

- 1-a -0

Diagran 4.6

;

complex

4.6) .

l'l "ll.p r]'
0l
1)

ts (z,t)

t. sphere

in the

Diagram

Again we

In 52.4 we

such that

plane

-l-2

l+0

1-ml-o

It is clear that we may obtain a fundauental region for At by keeping only

those (zrt) for which z lies in one of the regions A, At, B, or Bt.

Replace the points above Ar and B' (which are above the unit sphere) with

their images under S: these lie within the unit sphere and over A and B.

Lastly, translate all the points above B by U so that they 1ie above B"

(see diagran). This gives a fundamental region F for Ar with vertices

- 1+e

o ll \

AI A

\
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ar 0, -, o, ,, = ( 1,1/3) , pz =((3s+2) /7,/(317) ), and p3 = ( lu,l/z): see

Diagram 4.7 for a plan. The stabiLLzex G, of P, has order 6, and is

generated by TS (which has order 3 and fixes the edge rf )r orrd Y =

[,]" -?] (which has order 2 and fixes rhe edge ,zr). These satisfy

YTSY = (fS)2, and so G, is isomorphic to the dihedral group of order 6.

As before, we let t* = 
rgar{rr) 

be the basic polyhedron. It is a

triangular prism with vertices at 0, l, -, G, lcI,, and i(l+o): see

Diagram 4.8. There are nine edges: six are the images under G, of

{0,-1 , and bound the triangular faces (0,1,o; and (c1,, La,L(l+q,)); the

others are the images under G, of the edge {o,-1 of F, each occurring on

precisely two of the images of F.

So to generate the l-homology we have to start with two kinds of

generator: the usual symbol (y) representing {y(0)ry(*)}, and a second

symbol [yJ representing {V(cl),y(-)}. }Je clearly have the relation

(4.6.1) tyl = (yU),

and because the edges [yJ each 1ie on two images of F, we have the relation

(4.6.2) tyl + IyTSY] = 0.

As for face relations we have first, for the triangles,

(4.5.3) (V) + (yrS) + (y(rs)2) = 0,

and for the quadrangles:

(4.6 .4) (v) - tyl + (yY) - tyYl = Q.

As edge relations, the only ones we need are

(4.6.5) (V) + (yS) = 0, and

(4.6.6) (y) = (yr_,),

since the other .is (y) + (ySI_l) = 0, which is a consequence of these;

also, (4.6.2) is now redundant, being a consequence of (4.6.1) and (4.6.5)

since we have the matrix identity TSY = USU-I. So we ruay ignore the

second type of symbol altogether , if we use relations

(4.6.7) (i) (y) = (yr_, ) ;

(ii) (y) + (vs) _ 0;



Theorem 4.6.8 Eorm the Q-yector space with sgnboTs (y) as basis, for a

complete set of coset tepresentatives y fot G jn Ar, moduTo a77 reTations

of the form (4.6.7i(i), (ii), (iii), and (iv). r€t II(c) denote the

kerneJ, of the boundarg map d, defined bg (4.2.1) and extended bg Jinearitg.
*

Then (4.2.5) gives an isomorphjsm from H(G) to Hr(G\H3,4).

As before we can make do with the smaller set of symbols corresponding

to a set of coset representatives for G in A by adjusting the relations

suitably. We omit the details, which are simpler than for Q(/-2) since

all the matrices appearing in relations (4.6.7) have determinanr +l

(except for I , ), and merely state the resutt in terms of M-symbols for- -t

G = Ao (a).

Theorem 4.6.9 Form the Q-vector space with sgmboTs (c:d) as basis,

pl (") , moduTo a77 reTations of the form

(c:d) = t(-c:d);

(c:d) + (-d:c) -0;

(iii)
(iv)

for each (c:d) €

(i)

(ii)

(iii)

(iv) (c:d) +

J.

tret II-(a) Ae tae
+

v- (a) .

(v) + (yrs) + (y(rs) 2) - 0;

(V) - (yu) + (yY) - (yYu) =Q.

(c:d)+(c+d:-c)+(d:-c-d)

(oc+d:-c) + (c+( l-o)d:-sc-d) +

++
kerneT of E- = E t EJ. ?hen II-(a)

- 0;

(-d: c+ ( I -cv,) d) = Q.

is isomorphic to



94.7 The Algorithm for Q(/-11)

Ilere rhe geometric situation is very similar to that for Q( /-t): we

uay uake use of Diagrams 4.6 and 4.7 and construct the fundamental region

F in a similar manner. Now, of course, 0= lQ+/-ll), and the vertex P,

of F has coordinares ((3+Scl)/ll,/(z/ ll)). The stabilizer G, of P, has

order 12: it is generated by TS, of order 3, and. x = 'l-i, |1, wnicn arso
l.oF I z )'

has order 3; they satisfy (XTS) 2 = T. The fundamental- polyhedron F* =

^ Y- <Vfl is now a truncated tetrahedron, with four triangular and four
Y.bP

hexagonal faces: see Diagram 4.9.

We again 1et (Y) = iV(0),Y(-) ] and [yJ = {y(o,),y(-) }. The triangular

faces of F+ have edges (y) for y e Gri the hexagonal faces have alternate

edges of type (y) and [y]. So the relations are:

(4.7.1) (i)

(ii)
( 111)

(iv)

(v)

(vi)

tyl = (yU);

tyl+[yTSx]=o;
(v)+ (ys) - 0;

tyl = [yur-tU-'];

(v) = 1yr_, );

(v) + (YIS) + (y(rs) 2) 
=

(vii) (v) - tyl + (Yx) - tvxl + (vx') - [vx21 = o.

Of these, (ii) and (iv) follow from the others, and by means of (i) \.7e can

avoid the use of the second type of syubol altogether.

Theorem 4.7.2 Form the Q-yector space with sgnbols (y) as basis, for

a complete set of coset representatives y for G jn A' , moduTo al7

reTations of the form

(i) (v) = (YI_, ) i

(ii) (v) + (ys) - 0;

(iii) (v) + (Yrs) + (Y(rs) 2) - o;

(iv) (V) - (yU) + (yx) - (yxu) * (Yx2) - (yx2u) = Q.

*
r,et H(G) denote the kerneT ot D. rhen H(G) is isomorphic to Hl (G\H3,0)

via (4.2 .5) .
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In terms of

Theorem 4.7.3

M-syubols for A6(a), the result reads as follows.

Form the Q-vector space with sgmboTs (c:d) as basis,
1

each (c:d) e P'(a) , moduTo aLl reTations of the form

(i) (c:d) = t(-c:d);

(ii) (c:d) + (-d:c) = 0;

(iii) (c:d) + (s+d:-c) * (a:-c-d) - 0;

(iv) (c:d) + (ctc+d:-c) + (-c+(cl-l)d:co+2d) + (-d:c+(l-o)d)

+ (-2c+(o-l)d:oc+d) + (oc+2dz-2c+(cl-l)d) = Q.

+++
Let II-(a) denote the kerneT of D- = A t aJ. ThenH-(a):s isomorphic

+
to V-(a).



94.8 Other Quadratic Fields

fn order to extend the algorithms just described for the Euclidean

fields to the other complex quadratic fields K with unique factorization

(nanely A(r/-d) for d = 19, 43, 67 and 163), one encounters some geometric

and some alg-braic difficulties, but these do not seem insurmountable.

Because not every element of K has a representative modulo 0* of norm
'rf

less than l, the fundamental region for SL(2,OK) acting on H, has a

curved floor consisting of more than one section of sphere (whereas

above, the unit sphere with centre 0 sufficed): for example, see Swan

[20] section 16, where the case O(/-19) is worked out. However, similar

arguments to the ones used above would probably produee siritable

'fundauental polyhedrar, leading to a result siroilar to Theorem 4.3.2.

The other difficulty is that, of course, we would no longer have the

Euclidean Algorithm; apart from the use we make of this in general

arithmetic computations, we also used it in converting any modular symbol

whose end-points are cusps to a sum of the forn I{y(O),y(j-) } for some

matrices y e SL(2r0K). However, carefut inspection of the procedure

which brings an arbitrary point of H, to within the fundamental region

(using, as well as translationq and inversions in the unit sphere with

centre 0, inversions in the other unit spheres bounding the fundamental

region) should yield an algorithm for Ehese fields.

When the class number h of K is greater than one, the fundamental region

has more than one cusp (as remarked in 93.2, the number of cusps is equal

to the class nr:mber). This makes the geometry more complicated still,

and the definition of a cusp forra would need to take into account the

fact that not every cusp is equivalent to the cusp at infinity under the

action of SL(2,0K). Alternatively, it is quite likely that one should

use not PSL(2,0*) but some larger group, under the action of which every

cusp is equivalent to jo, as the main discrete group acting on H".

79
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As for modular s1mbo1s, one might have to use more

those of the form {y(0),y(j-)} to generate homology;

calculations, such as manipulation of the l'I-synbols,

difficult. Ilowever I see no fundamental reason why

given in this chapter for the Euclidean fields could

be extended to any complex quadratic fie1d.

symbols than just

details of the

would also be more

the algorithros

not, with more work,



CHAPTER 5

The Computations and Results

For each of the five Euclidean fields discussed i.n the previous

Chapter, computer programs have been written in Algol 68 which carry

out the algorithms presented there, in tems of M-syrobols. These

programs have been run on an ICL 2980 computer at the Oxford University

Computing Service. Thus we have been able to calculate, for each

field K and each ideal a of 0* such that Na is not too large, the

dimensions of v(a), v*(a), and v-(a); the actions of the main involution

J, the W_ involutions for each prirne r,. dividing a; the action of the'Tt
Hecke operator T, for any prime Tr not dividing a; the splitting of V(a)

into one-dimensional spaces which are eigenspaces for all these operatorsi

ani the eieenvalues on each such subspace. By inspection, we can easily

determine which of these eieenspaces correspond to oldforms, since we

will have already met theu as newforms for Ao (b) for some b dividine a.

For each field we qive first a table showine for each ideal a (with

norm up to some bound) the dimensions of V(a), V*(a), and V (a) as well

as the dimensions of the eorresDorrding spaces of newforms for As(a).

Then for the tt+tt ,?.nd tt-tt spaces separately we 1ist, for each 1eve1, the

first fifteen Hecke eigenvalues for each newform. Thus two lirnits had

t.o be set for each field: the upper bounds for Ehe norm of the 1eve1 a,

and for the number of Hecke operators of which to calculate the action.

These limits were decided in .terrns of how much computer time was available:

in all cases the physical limitations (storage space and size of integers

encountered) would have allowed the computations to be extended much

further. For exanple, for o(i), the systematic coverage of all leve1s

stops at norm 500, but a few isolated levels were calculated up to
1'.)(t+i) '', with norm 4096.



As well a.s the systematic coverage of all 1eve1s a with norm Na less than

a certain bound, a few sporadic cases were also computed for ideals of

larger norm: firstly, to gather evidence for Claim B of 55.6 before this

$ras proved, and secondly when it was known that there existed elliptic

curves with the corresponding conductor. For example, R.J.Stroekerrs

thesis I l9J gives tables of all elliptic curves over QU-l) and e(/-2)

with bad reduction only at the priue dividing 2; for Q(/-l), extra

calculations were done with powers of (1+i).

For the first three fields, some of these calculations have been

previously carried out by Mennicke and Grunewald, working in Bielefeld.

They only work with split prime ideals, for which the M-symbols just reduce

to elements of the projective line over a finite field GF(p), for a rational

prime p. The relations they use are derived in an algebraic, rather than

a geometric way, described in Ul I for the case a(/-l). In this paper

they also give results for O(/-t), A(/-2), and O(/-3), which agree with

the tables in this Chapter insofar as they overlap.

We have also made a systeuatic search for elliptic curves with smal1

conductor over each of the five fields. Here we implement on the computer

Taters algorithm (c.f.t 2l) to determine the type of the reduction of an

elliptic curve at a prime p, given its coefficients al,r2r^3,a0 and aU

(see equation (1.4.1)). It is easily seen from the formulae given by

Tate (op. cit.) that we may assume that al, 42, and a, are reduced modulo

2, 3, and 2 respectively; so the search consists of a systematic stepping

through an enumeration of the pairs (aOra'): for each pair, all values of

a, and a, (mod 2) and a, (mod 3) are considered.

In the next five sections the following tables are given for each field:

l) The dimensions of V(a), V*("), and V (a), and the corresponding

subspaces of newforms, for each ideal a, with norm less than a fixed bound.

This bound was 500, 300, 500,200, or 200 for Q(/-1), a(/-2), Q(,/-3),

0(/-7), and a(/-11) respectively. Levels a with dim V(a) = 0 are omitted
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from Ehe Table for brevity.

a, a is given, since obviously

v(a) ro v(;).

A1so, only one ideal

conjugation induces

each conjugate pair

isomorphism from

of

an

2) A list of the first fifteen Hecke eigenvalues for each rnewformr in
+

V'(a), together with the eigenvalues of the W involutions.

3) As for Table 2, but for V-(a).

4) A list of elliptic curves defined over K, in order of the norm of the

conduetor. The coefficienEs and various invariants of each curve are

given, as well as the Trace of f'robenius at each of the first fifteen

primes (in a separate Table). Only one of each pair of conjugate curves

is listed; only one curve from each isomorphism class is included;

isogenies between listed curves are indicated.

In Table 4, no elaira of completeness is made. There areralmost

certainlnmore curves with small conductor, with coefficients outside

the search region. In particular, we expect there to exist an isogeny

class of curves with conductor a to correspond Eo each newform in V+(a)

(see $5.6), but comparison of Tables 2 and 4 for each field will reveal

that some of these expected curves have not yet been found. There is

some precedent for this in the rational case: for some conductors,

for example 78, no curves were found by any systematic search. Of course

Tingleyrs method, described earlier, gives a method for constructing

curves directly from newforms, in the rational case. Eventually we

expect Eo fill the gaps in the Tables for the five Euclidean fields, buL

at present we give, at the foot of Table 4 for each field, a list of

tmissingt conductors.

For the field O(/-t), extra tables are given of curves with conductor

a power of (l+i): these are taken from [l9J; there are also extra tables

of newforms at the corresponding levels.
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55.1 The Results of Computations for O(/-l)

Table 5. 1. I : Ideals a of Z[i] with Na < 500 and dim V(a) > 0

Table 5.l.la: Dim V((l+i)") for e < 12

Table 5.1.2: Rational Newforms in v*(")

Table 5.1.3: Rational Newforms in v (a)

Table 5.1.4: Elliptic Curves with suall Conductor

Table 5.1.4a: Elliptic Curves with Conductor (t+i)" fot e < 12

Table 5.1.5: Elliptic Curves with small Conductor. Zeta Functions

Table 5. I .5a: Elliptic Curves with Conductor ( l+i) e z Zeta Functions



Table 5. l. l: Ideals a of Z[i] with Na < 500 and dim V(a) > 0

0n1y one ideal of each conjugate pair is given. Numbers in parentheses

refer to diuensions of spaces of newforms. The rsplitting field', which

is Q untess otherwise specified, is the smallest extension of Q containing
all the eigenvalues of the Hecke algebra acting on V(a).

a Na dim V(a) ain v+(a) din V (a) Splitting Field

(7 + 41)

(8 + 2i)
(6 + 6i)
(7 + 7i)
(10)

(9+5;
(11)

(9 + 7i)
(11 + 3i)
(10 + 6i)
(11 + 4i)
(2)
(9 + 3i1
(12 + i1
(2 + 41)

(10 + 8i)
(2 + 6:)
(13 + 4i)
(13 + 5i)
(1 4)

(10 + 10i)
(14 + 4i)
(1 5)

(13 + 8i)
(11 + 11i )

(16 + i)
(14 + 8i)
(6 + 2i)
(16 + Sil
(16 + 4i)
(15 + 7.i)

65

68

72

98

100

106

121

130

130

136

137

144

145

145

160

164

180

185

194

196

200

212

225

233

242

257

?60

260

265

272

274

1

1

1

1

1

1

1

1

2 (0)

2 (0)

1

3()
2

1

2

1

1

1

2

2 (0)

3 (1)

2 (0)

1

1

2 (0)

1

3 (0)

2 (0)

1

4 (1)

2 (0)

1

0

1

1

1

1

1

1

2 (0)

0

0

2 (0)

0

0

1

1

0

0

2

2 (0)

3 (1)

2 (0)

I

1

2 (0)

1

3 (0)

2 (0)

1

1

0

0

1

0

0

0

0

0

0

0

2 (0)

1

1

2

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

3 (0)

2 (0)



(Continued)

a Na dim v(a) ain v+(a) dim V (a) Splitting Field

(4 + 9i)
u2 + 12i)
(7)
(7+i)
(13 + 11i)
(15 + 9i)
(17 + 5i)
(16 + 8i)
(1 8)

(15 + 10i )

(7 + 61)

(18 + i1
(18 + 2i)
(13 + 13i )

(18 + 4i)
(14 + 12i)
(18 + 6i)
(19)

(19 + i1
(15 + 12i )

(17 + 9i1
(16 + 11i)
(18 + ail
g4 + 14i)
(15 + 13i)
(20)

(17 + 11i)
(19 + 7i)
(18 + 10i)
(19 + 8i)
(7 + 1211

(21)

(19 + 9i)
(18 + 11i)
(15 + 15i)

277

288

289

290

290

306

314

320

324

325

325

3?s

328

338

340

340

360

361

362

369

370

377

388

392

394

400

410

410

424

425

433

441

442

445

450

1

5

1

5

?

1

1

4

1

3

1

3

3

2

?

3

4

3

2

1

3

4

4

5

1

7

2

2

4

2

2

1

2

2

3

(0)

(1)

(0)

(0)

(1)

(1)

(1)

(0)

(1)

(0)

(1)

(0)

Q)

(?)

(1)

(1)

1

3

1

1

0

0

1

2

1

2

0

2

2

2

0

1

2

1

1

0

0

3

4

5

0

5

2

1

3

1

0

1

1

0

3

(0)

(0)

(0)

(0)

(0)

(0)

(0)

Q)

(0)

(0)

(1)

0

2

0

4

2

1

0

2

0

1

1

1

1

0

2

2

2

?

1

1

3

1

0

0

1

2

0

1

1

(0)

(0)

(0)

(0)

(0)

(0)

(0)

(1)

1

2

0

1

2

0

a</?)

au2>

a(/3)



Table 5. 1. I (Concluded)

Table 5. l. la Dim V((l+i)e) tor e < t2

This gives the

Beyond e = 12 the

computer time and

same information
spaces V(a) could

storage space.

as Table 5.1.1, for a = (l+i)e
not be calculated for reasons of

a Na dim V(a) ain v+(a) dim V-(a) Splitting Field

(21 + 3i)
(6 + 14i)
(7 + 13i>

<21 + 5i)
(18 + 12i)
Q2)
(7 + 1411

Q1 + 71)
(18 + 13i)
(20 + 1gi;

450

452

458

466

468

484

485

490

493

500

2

1

1

2 (0)

1

4 (1)

2

2 (0)

1

3 (1)

1

0

0

2 (0)

0

4()
?

2 (0)

0

2 (0)

1

1

1

0

1

0

0

0

1

1

au2)

e NA din V(a) aim v+(a) din V (a)

8

9

10

11

12

512

1024
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Table 5. I .3 Rational Newforms in V (a)
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Table 5. 1.4 (Concluded)
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Table 5.1.4a Elliptic Curves over Q(i) nith conrhrctor (1+i)" fot e < 12

This list is taken from Il?](note that Stroekerrs curves II3, II4, III3,
and III4 have conductor (l+i)1? 

^na 
not (l+i)10 

"" h" asserts). Only one

curve from each isogeny class is listed. There are also 8 isogeny classes

of curves with conductor (l+i)13 ,rd 12 with conductor (t*i)14. The

syubols used to identify the curves are the ones used by Stroeker.

Symbol "r ^2
a^

J
a,

4 ^6
A CM j Conduct.or

I1

T?,

rx1

tx?

I3

t4

V1

v2

II1
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TT4

IIIl
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0
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0
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0
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21

0
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cM(1)

cFt(1 )

cM(1)

cM(1)
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cM(2)

CM(2)

2
12'

2
12'

27
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2
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z5z3

P3
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n3

203

203

(1+i 16

(1+i 18

(1 +i )9

(1+i)9

(1+i ) 
10

(1+i)10

(1+i ) 
10

(1+110

(+i)1?

(1+i)12

(1+i ) 12
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Table 5. I.5 Elliptic Curves over Q(/-l): Zeta functions

For each isogeny class of

first fifteen coefficients a

a is the Trace of Frobenius
TT

function. )

curves in the previous table (5.1.4), the
(for nprime) of the zeta function are given:
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Table 5. I .5 (Concluded)
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Table 5.1.5a Curves with Conductor (1+i)" fo. e < l2: Zeta Functions

For each of the curves in Table 5.1.4a we give the same information as

in Table 5.1.5.
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95.2 The results of Computations for Q(/-2)

Tab le 5 .2 .1

Table 5 .2.2

Table 5 .2.3

Table 5.2.4

Table 5.2.5

Ideals a of Zl0l with Na <

Rational Newforms in v+(a)

Rational Newforms in V (a)

300 and dim V(a) > 0

Elliptic Curves with sma11 conductor

Elliptic Curves with small conductorz ZeLa Functions
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Table 5.2.1 ldeals a of Z[0] with Na < 300 and dim V(a) > 0

Only one ideal of each conjugate pair is listed. The splitting field is
Q unless otherwise stated. Numbers in parentheses give the dimension of

the appropriate subspace of newforms, when this is less than that of the

whole space.

a Na dim V(a) aiu v+(a) din V (a) Splitting Field

(40 )

(6)

13 + 40)

(7)

(7+e)
(2 + 50)

(8)

(8+g;
(6e ).
(5 + 50)

(8 + 3e)

(8 + 40)

(70 )

(9 + 30)

(1 0)

(2 + 791

(10 + 2e)

(6 + 6e)

(4 + 791

(11)

(1 +0)
(5 + 7e)

(8e)

(11 + 20)

(10 + 4e)

(2 + 391

6+791
(8 + 6e)

(2)
(12 + e>

(7 + 70)

32

36

41

49

51

54

64

66

72

75

82

96

98

99

100

10?

108

108

114

121

123

123

1?8

129

132

132

134

136

144

146

147

1

1

1

1

1

2

2 (0)

1

3 (1)

1

2 (0)

2 (0)

3()
1

3

2 (0)

4 (0)

3 (1)

2

2

3 (1)

2 (0)

5 (2)

2

1

2 (0)

1

1

7 (2)

1

2 (0)

1

0

0

0

1

1

2 (0)

0

1

0

0

2 (0)

1

1

1

2 (0)

2 (0)

1

1

1

0

0

3 (0)

0

0

0

0

0

3U)
0

0

0

1

1

1

0

1

0

1

2 (0)

1

2 (0)

0

2 (0)

0

2

0

2 (0)

2 (0)

1

1

3 (1)

2 (0)

2

2

1

2 (0)

1

1

4()
1

2 (0)

o ('/3)



Table (Continued)

a Na dim V(a) aim v+(a) dim V-(a) Splitting Field

(10 + 50)

(9 + 661

(5 + 8e)

(12 + 361

(8 + 7e)

(6 + 391

(2 + 961

(1 3)

(3 + 90)

(4 + 991

(8 + 391

(12 + 561

(1 4>

(10 + 791

(6 + 96;
(100)

(4 + 20)
(2 + 1961

(12 + 661

(4 + 1gg1

(11 + Z0)

(15)

(5 + 100)

(14 + 49;
(2 + 791

(11e)

(14 + 591

(2 + 1191

(7 + 169;

(16)

(16 + g1

(4 + 119;

(16 + 291

(8 + 1691

(13 + 791

150

153

153

162

162

164

166

169

171

178

192

194

196

198

198

200

244

204

216

216

219

225

225

228

24?

?42

246

246

249

256

258

258

264

264

267

I

?

2

3

4

4

4

1

?

1

1

4

2

7

3

5

7

3

2

9

6

1

7

3

(0)

(0)

(1)

(0)

(0)

(1)

(0)

(?)

(1)

(1)

(1)

(0)

(1)

(0)

(3)

(1)

(0)

(0)

(0)

(3)

(3)

(0)

(2)

(0)

4

2

4

4

9

1

11

1

4

5

2

?

0

2 (0)

2 (0)

2 (0)

2 (0)

1

0

0

0

1

4 (0)

1

2 (0)

1

2 (0)

3 (1)

3 (0)

0

4 (0)

3 (0)

1

1

1

2 (0)

1

2 (0)

0

1

'l

6 (2)

1

0

1

0

2

2

0

1

2

?

3

1

2

1

0

0

1

5

2

3

4

0

2

5

3

0

6

2

2

1

2

4

8

0

5

0

4

(0)

(0)

(0)

(0)

<2>

(0)

(1)

(0)

(1)

(0)

<2)

(0)

(0)

(0)

(0)

(2)

(1)

(0)

(1)

(0)
4

2

0

au?>

a (,/3)

a (,/5)
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Table (Concluded)

a Na dim V(a) aim v+1a; dim V (a) Splitting Field

(5 + 110)

(14 + 60)

(12 + 8e)

(6 + 110)

(16 + 4e)

(120)

(t7)
(2 + 120)

(r4 + 70)

(1s + 60)

(13 + 80)

(3 + t2e)

(10 + 100)

267

268

272

278

288

288

289

292

294

297

297

297

300

I

2 (0)

3 (r)
I

4

l9

(1)

(4)

5

2 (0)

e (3)

s (3)

4

s (3)

e (0)

I

0

0

0

3 (0)

l3 (4)

I

0

2 (0)

3 (r)
2

3 (l)
2 (0)

0

2 (0)

3 (l)
I

I

5 (o)

4

2 (0)

7 (3)

2

2

2

7 (0)

q(3)



Z[0]: Rational Newforus in V+(a)

B
t{
q)

]Jo

o
\o

I

@o
^I 

\o
ttO\ l/\

++

N

@
rf)

I
rn
o
tv)
+
rn
@
.f

I
ift
o
-f
+
M)

tn

@
tf!
I

@
rvl
+

<D
N

I
i{)

N
+
tv)

@
Iri

@
+
t...

(D
I

(D
+

@

tf.fOO$O-fr
N.f\OFOr(\Jr\OtnF

tllltltNNttNNtNtlttt

ooo
N\t\O-fNCOOO.$

O I I lf 0O -+ I I O I I I € -S (rJ I I -f I I r

oONr-f-f\O.fN-f@.f(\Jo oo .t oo I I I I I I 0O -+ I I .t .t I .f I

o N r') \o \o € \o \o o\ o \o \o \o oI I I \O I \O \O \O I I I I r I I I - \O \O I

ONON\O\O\O0O\O\O\OO\OI C) I \O I \O I I I I I O I \O I \O I O I

o\ON\ONO\\ONtq-f(\t
I I I I lNlNl I I 1ool I I I l+-S-f

-f .+ -t N .,t \o
O O N I N .f I I + O \t I rn \O I .t I .f N Ln r

.f .+ -f -f -+ \f .f N \O c\J tnO I N I N -f I I O O \t -f I t I .S I -t I I I

NrNff)
lFllO++lNl

rq\O\ONN€(\lN
N+ I N\ON I \O I I N I lq I ON I NN\O I

\O\O\O\O\ONN\OtnNN
N I lN\Ol I I I lNNt IONIN lor

$ .f \O lv) \O \O .$ :$
O I O -t O \t O O -t I I I I I I -t O I \O I I

N-t.$N.$nO I rO .$ O + O O .f I I I O rr) I -f I I (rl rO I

N(\I
Ole+l

Ntrot

o+t+t+t l+llOFOlOO+Ol

Nt+r+

o
z.

N $ N 0O 6 O 0O -f .f =t 0O .f cO O O\ r/'l r N \O
t\r) rn !n N 6 o\ o o r N -f \o N o\ ol\ o N N -f -f

TTFNNNNNN

o
o@@o@@

@OOOCDOT^NI-Olr-
<Dtnrfi\ONOOO\++@++o++@@+o++N++NC)Orn+N+

-$ N (\J \O N O\ \O -f r r \O .f F r r rn r Nvvvvvvvvvvvvvvvvvvvvv



Table 5.2.2 (Concluded)
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Table 5.2.3

105

Zt0l: Rational Newforms in V (a)
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Table 5.2.3 (Concluded)
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Elliptic Curves over Q(/-2) with smaIl conductor
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Table 5 .2.5 Elliptic Curves over Q(/-2): Zeta Functions

For each isogeny class

Trace of Frobenius at the

of curves in
first fifteen

Table 5.2.4, we give the

primes.

N

@
r')

I
tn
@r)
+
LN

@
\t

I
t.r
(D
-f
+
MI

LA

o
rf)

I

o
tfi
+

@
N

I
to
o(\t
+
tf)

@
I

ro

@
+r|
@

I
r

o
+

o

*+
F.$
ltl

.$F

(\.r N
.fll

U
rl

(\J
OrFIO\

\o
r-fl

.f -f

t\
.flN

Nl-
Ntt

FNI

.+ -f rn
trl

-$ lv) AJ
ttt

F ff)
tl

lFl

r
tll

-f,-fo
rOrN

IIN(\JINI

oo
--$N0OllloO.$Nll

o-f^t.tcolloO\tll.f

\O\O\OO\O\O\O\O
tttllll

\O \o \O
\OlFOl\Ol\O

O\O(\Ilf)-tmrlloOlll

(\l .$ \O
(\J.fltn\Ol-tl

N.$.f-$Nt-$.$ltl-fl

\O c\J \O N
tNtr{)loNl

\O ln C\J\ONNllONl

.$ \O r\rl \O \O
Olllll\to

\O-f-fN
lllOM)-fl

Nr\l
NlFllol

.f-SOO.fN-f-\Or
ltllllml

OOO N\olOll-foO-SlOl

oo ONF-f\OlOroO.+oOlll

ONrfi\O\OoO\Oltl\Ol\O\Ol

o\OON\O\Oo
l-lOl\Ol\Oll

OO \o (\J \o (\l o.
ltttrtNll

.f -fNooNtnJ$llo

\+ -f \tNOlmlN.,tlOO

.Orlv)\O\OGJ
!NlIN\ONlll

\O\O\O\ON(\J\ONllN\Ollll

-$\OOIO-tO-fO-fr

\oNr
lOlm-folO.+-

NNFN(\Ilolelllol

rrNeN-Foororrlttt

NF(\Ioorrorror

N-OFOOOO

rooorroo

rF
z,

O\ N -f N 0O O. O .$ -+ -t oO \i 0O O O. tn \O o\
ffl [n tn t\ O\ O\ O F N C\J .$ \O N O\ O\ O F (\l .$ -f,

TTNNNNN

rF o@@@@
@@oooo@rnl-NOC\tG,rnMtl\\O0OO.++O+
I @++OO+o+ I (\!++Noo Ln++

vvvvvvvvvvvvvvvvvvvvv

+ r N lo .f rn \o I\ oo o\ o r N l.o .$ rn \o N oo 6 0rrrrrrrFNN



(Concluded)

N

(D
rfl

I
Ln

@
to
+
tn
o-t
Irt

(D
.f
rf)

rn

o
tf)

I

o
rfl
+

o
cu

I
rf)

o
N
+
to

@
I

MI

o
+
rfl

@
I

o
+

o

.f-fOO
-\O-+NIINNININNN(VCVII

ON
Or\ONr.S.SI I \O I I 0O .f I I .f .+ N oO .$

o O\OO.$-f-to\l-l\Olem.lfl.fl-tlll

\O\O\O\ON\O\O\ONN
llll\Ol\O(\JNlll-O

\O \O \O \O \O \O \O \O
llllONlN(\lllIO\O\O

OO\O\ONOO\O\OOO\O-f
rrllllnJlllNool

NN.S.+.fN
N I I N .$ .f 0o I .$ I -f I (\t nJ I

NN\O.$.f-f.$N
lNlNl6Nl.f-tllll

r\JN\O\Ofl
\O\OIIOO\OIINNF\OILn

NN\O.f\O\O\O\o\otllttttNN\orlM)

\ONN.f-frLn
l \O N l l O .f l l -t O l tl l

\O (\l -f .$
\OlNl-fNO-fl-flOOll

NNNr
lNlNNlllFlOOO

NNr FN
NIININIIOOIN

oooooooooorooN

F
z.

\o \o \o \o € -f N 0o 0o 0o oo o. N t\ r\ln Ln [n tn [n \O \O 0O 0O 0O € 0O O\ O\ O\
NNNNattNNN(\JNl\INT\lNN

\F o@@oo@N\OoOoO++FoOOO+++\O \O \O \O \O \O + N N N N N l.f\ M) l.Or e tn r F r -vvvvvvvvvvvvvvv

+ N rq $ ! \o N oo o. o (v 1r) -+ |r1 \oN N (\r N N N N N r.O iq rO if) y1 m m



55.3 The results of Computations for Q(/-3)

Table 5.3.1 ldeals a of Z[pl with Na < 500 and dirn V(a) > 0

Table 5.3.2 Rational Newforms in v+(a)

Table 5.3.3 Rational Newforms in V (a)

Table 5.3.4 Elliptic Curves with sma1l conductor

Table 5.3.5 Elliptic Curves with smaI1 conductorz Zeta Functions

tt2
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Table 5.3.1 Ideals a of Z[p] with Na < 500 and dim V(a) > 0

0n1y one ideal of each conjugate pair is listed. The splitting field
is Q unless otherwise stated. Numbers in parentheses give the dimension

of the appropriate subspace of newforms, when this is less than that of

the whole space

a Na dim V(a) aim v+(a) din V (a) Splitting Field

(7)

(8+p)
(5 + 5p)

(10)

(11)

(10 + 2p)

<7 + 7p)
( 13)

(9 + 6p)

(8 + 8p)

(4)
(11 + 5p)

(10 + 7p)

(1 5)

U4 + 2p1

(15 + p)

(16 + p)

(11 + 6p1

(13 + 6p)

(7)
(6 + 2p1

(10 + 10p)

( 18)

(15 + 5p1

(4 + 7p)
(19)

(11 + 11p;

(14 + 8p)

(5 + 7a)

(17 + 5p1

(13 + 10p)

49

73

75

100

121

124

147

169

171

192

196

241

219

?25

228

241

273

273

?83

289

29?

300

324

325

343

361

363

372

379

399

399

1

1

1

1

2

2

3 (1)

1

2

1

3 (1)

1

2 (0)

3 (1)

1

2

1

1

1

2

2 (0)

5 (1)

2

1

3 (1)

3

5 (1)

4 (0)

1

1

?

0

1

1

0

1

1

1

0

1

1

1

0

2 (0)

2 (0)

1

1

1

1

1

1

2 (0)

3 (1)

1

0

1

1

3 (1)

2 (0)

1

1

0

1

0

0

1

1

1

2 (0)

1

1

0

2 (0)

1

0

1

0

1

0

0

0

1

0

2 (0)

1

1

2 (0)

2

2 (0)

2 (0)

0

0

2

a(/33)



Table 5.3. I (Concluded)

a Na dim V(a) dim v+(a) diur V (a) Splitting Field

(20)

119 + 4p)

u6 + 7p)

(18 + 5p)

(.21)

(13 + 12p)

(15 + 10p)

(6 + 9p)
(22)

(17 + 8p)

(20 + 4p)

400

412

417

439

441

469

475

481

484

489

496

3

1

2

1

7

2

2

3

5

1

4

(1)

Q)

(1)

(0)

1

1

1

0

3

0

1

1

2

0

2

(1)

(0)

(0)

2

0

1

1

4

2

1

2

3

1

?

(0)

(1)

(1)

(0)

a (/1 3)

o (,/6)

114



Z[p]: Rational Newforms in V+(a)Table
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Table 5.3.2 (Concluded)
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Table s.3.3 Z[p]: Rational Newforms in V (a)

B
tr
0)

]Jo

o_

+rl

o_ o_otn
+00

o_ o_N++rnN
NrvvvF

+t++

o-
+\o
o_\o
+

o_rl
+.f
o-
.f
+
i{)
o-
[n

a-
+
rn

rn

a_
i{)
+
N

N
+n
o_
t,)

o
+
r{)

a-
+
N

o_
N
+

C\J

o-
+

nJl0o\oo0o.J..so\o-i.NoN
.f I I F I .f I ! .f I e I I .f I -+ .+ r I

oo-fO\O.f-foOI 0O \O OO € 6 O .S r I I .l. I -f \O I N ! I

ooo\OTON(\JO\NN
N00 I I NN I I r,) Nnr \O I I I \O I N

o
N0OtnNNOTNO\O\O\ON
I I \O t I I N N I I \O F I I .t I .$ I rv1

.frN6-ftn-f
.s -f I I I I I O (\.l I I O -f I -f N O O .f €

-f.frv).$oo€.f
I I -t I N N .$ O I -f tn I O I I t O O I e

N\OONF\OO
I + I eF-i I + I O\ I (\ I Nr\O + O\

NN.f(\l.J.-f-$N.f .S\Or I I O I O I I I I I tn I -f I O

-f.f\O.f.f@@\O
I I I I N I l-f I l^l I O lO l.$+N

-$nl\OnJ\Orn-fN\O(\t
N I I m l (\l l I I I I (\IN I -f Nln

N\OAJNN
I .f N + -f I N tn rfi .+ + N (\J I I N \O I \O

N.INNN.f
l^lt tNNOot I I I t +ot + tNt

N(vNrv.t-fN
+ I N I I -f O O I nJ ni *S I O Mt I m l .f

r + ro + T rrr ^t o + rq T T r rcr T + 
^l

l{) (v (\rooo I o++ tNo+ I I I t^.r I I o+

o
z.

O\ O r -f 6 F rn r O\ .f rn O\ 6 N O\ r rn -f 6-f O N N \O N O N -f € N N O\ 6 r ft .$ N oO cOr r N N N N tq ift r{) t{) -f .s -f .$ .$ -f

o
aa^ aa.o-a-oc)o_a_oo_NO.LnO-tnrNrnoO+\O+++++++++O r O lq + r tn Ln N OO rn lfl m \O CO tn N Nf\rO\F-NNvvvvvvvvvvvvvvvvvvvv

tl



118

Table 5.3.4 Elliptic Curves over Q(/-3) with sma11 conductor

c.)

>t
x

cr)
I

o_x
+
X

\1,

\o
d
$

(0

X

I

o
>t
+
x

e.t
d

I
o_

CL

O

\J

c.,
d

.d
OJ

o
h
d
q)
o
a
(d

B

tr

'Fl
b0
0.,
tr
00
tr

.F{

Bo
Fl
Fl
o

rF]

o
H

o
0.)

tr
0,
o0
o
a
H

o.--{O-{

rF
z - .f -f N N N \O cO \O \O nn ffl m Y)

O\ Mr t F N N \f -$ -$ N O\ O, N .+ Ln r.n i\ f\ N oO
-f I\ N € r r r F N (\J (\I N61 nI N nl

rF
O-Qao-o-o-O-O-NO-OO-O-NO-o-oOcO\OLnO-Ln+N|*\OoO++++++

+ + + o N + + + + -s -f Ln \o \o \o ri)
tOcOtnO\I\NO\oOrrr
vvvvvvvvvvvvvvvvvvvv

€

L)

oo

rl to
E=
CJ (J

o

rt
E(J

o

tt)

=(J

o

I\4

=(J

z
-fFO\(\t \O .$

o\ Ml rn o\ -$ \o o\ o. lo -$ .$ N \o \o ifl N € rq.$ f\ N N CU N \O \O (\J O OO N r tn tn N l,\ \O €
N N r 0o o\ Ln rn rt N cO .f N N N -$ rq N

rlqNNfqNl (\JO
tnN\O

o
tfl

o-o-N
O-O-tr\O-rO\Oo-o-No-\oFl-lf)No-

lf)o\+nJO\lf)+r+l\O+ + tn N N r{1 lO \O N oO oO + \O + N O +
CO r N -,t \O O\ + .S (\l N \O \O tn \O lJ)
I I I I I I I I tO r{.t I I tn I F F I INN

\o
(d

o-o-OOOOT(\JO
tll

oooooooooo
I

(0

o-o+lfr to
lLn

o-oo_OIOO
oo-++

O-Or
l-tl

ooooa_o_o

c.)
(d

o-ta-
o
+a-OOr .tOOOO-Or

o_
Ia-o

N
d

o. a- o- a- o- o-+ll+r++O-
N

o-o
Go_o_+++o_ooooo.

rlll

d
o_oo-o-o+++++

CrOQeOO--OO-rOA-
ttlllll

OO
o-
+

O
I

+ OFNrq$tn\ONcONtq-+ln\oNooo\rrrr



r l9

Table 5.3.4 (Concluded)
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Tab 1e 5. 3. 5 Elliptic Curves over Q(/-3): Zeta Functions

For each isogeny class of curves in Table 5.3.4, we give the Trace of
Frobenius at the first fifteen primes.
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55.4 The Results of Compurarions for Q(/-7)

Ideals a of 7l|0+/-7)l with Na < 200 and dim V(a) , O

Rational Newforms in V+1a;

Rational Newforms in V-(a)

Elliptic Curves with sma11 conductor

Elliptic Curves with sma11 conductorz Zeta Functions

Table 5.4.1

Table 5 .4.2

Tab1e 5.4.3

Table 5.4.4

Table 5.4.5
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Table 5.4.1 Ideals a of 7U (t * /-7)) with Na < 200 and dim V(a) > 0

is
of
the

0n1y one ideal of each conjugate pair
Q unless otherwise stated. Numbers

the appropriate subspace of newforms,

whole space.

is listed. The splitting field
in parentheses give the dimension

when this is less than that of

a Na dim V(a) aim v+(a) dim V (a) Splitting Field

(5)

G2 + 4a)

G)
(2 + 4a)

(-1 + 5o)

(5o,)

(6 + 2o)

(-3 + 6o)

(8)

(6q)

(1 + 6cl)

(4 + 5s1

1-3 + 7a)
(8 + 2o)

(7 + 3o1

(2 + 6o)

GZ + 7a)
(9+s1
(6 + 4o)

(10)

(5 + 50)

(8 + 3q,)

(4 + 6o)

(-4 + 80)

(2 + 7a)
(-2 + 8o)

(11)

(9 + 3q;

(8o)

(2)
(6 + 6o)

25

28

36

44

46

50

56

63

64

72

79

86

86

88

88

88

88

92

92

100

100

106

112

112

116

1',t6

121

126

128

144

144

1

1

1

1

1

2

2

1

1

2

1

1

1

2

1

3

1

2

2

5

3

1

4

(0)

(0)

(0)

(0)

(1)

(0)

(0)

(1)

(0)

(1)

(0)4
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3

2
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3
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5
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au17)



(concluded)

a Na dim V(a)
+

dim V (a) dim V (a) Splitting Eield

(8+
(-1 +

u2+
(5+
(3+
(7+
( 13)

(11 +

(10 +

(+
(-5 +

(2+
(9+
(6+
(4+
(-4 +

(8+
(?+
(-? +

(4)
(3+
(10 +

(1 0o)

5cl)

9cx,)

o)

7a)

8o)

6o)

3o)

4cx,)

9o)

1 0o)

2cl)

5q)

7a)

8o,)

1 0cl)

6o)

9o)

1 0o)

9cr)

' 5cr)

154

154

158

158

161

163

169

172

172

172

175

176

176

176

176

176

184

184
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Tab 1e 5 .4 .2 ZG(l + /-7)l: Rational Newforms in v+(a)
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Table 5 .4.3 Z[i(1 + /-7)]: Rational Newforurs in V-(a)
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Table 5.4.4 Elliptic Curves over Q(/-7) with sma11 conductor
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Table 5.4.4 (Concluded)
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Table 5.4.5 Elliptic Curves over e(/-7) : Zeta Functions

For each isogeny class of curves in Table 5.4.4, we give the Trace of
Frobenius at each of the first fifteen priues.
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55.5 The Results of Computations for Q(Gl I )

rdeals a of Zll3+/-t 1)l wirh Na < 200 and dim V(a) > 0Table 5.5.1

Table 5.5.2

Tab1e 5.5.3

Table 5.5.4

Table 5.5.5

Rational Newforms in v+1a;

Rational Newforms in V (a)

Elliptic Curves with smal1 conductor

Elliptic Curves with small conductor2 Zeta Functions



Table 5.5.1 rdeals a of Zli(t * /-tt)l with Na < 200 and dim V(a) > O
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Table 5.5. I (Concluded)
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Table 5.5.2 zt; ( 1 + /-t I ) l: Rational Newforms in v* (")
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Table 5.5.3 Z[](1 + /-11)l: Rational newforms in v-(a)
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(Concluded)
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Table 5.5.4 Elliptic Curves over Q(/-lt) ll"irh suall conductor
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Table 5.5.5 Elliptic Curves over Q(/-ll): Zeta Functions

For each isogeny class of curves in Table 5.5.4, we give the Trace of
Frobenius at the first fifteen primes.
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5s. 6

l3B

Some couments on the results in the tables

Consider the tables of results for O(/-1), recorded in the tables in

$5.1. They support the following claim.

Ctalu A (i) For every newforu in V+(a) there corresponds an isogeny

class of elliptic curves defined over Q(r/-t) witfr conductor a;

(ii) For primes p not dividing a, the Trace of Frobenius of the curve

at p is equal to the eigenvalue of Tp acting on the space generated by

the newform;

(iii) For primes p dividing a: if p'divides a rhen the Trace of

Frobenius of Ehe curve at p is 0, otherwise (if p divides a exacrly) it is

minus the corresponding eigenvalue ofW:
p-

(iv) Every elliptic curve defined over Q(/-l) corresponds to a newform

in V+1a) in this way, where a is the conductor of the curver g!f[ when

the curve has complex multiplication by an order in a( /-l),

Parts (i), (ii) and (iii) of Claim A also hold for the other four

fields, as one can verify by inspecting the appropriate tables. We are

unable to prove them, however. Part (iv) has an obvious analogue for

the other four fields: curves defined over K with complex multiplication

by an order in K do not correspond to cusp forms. The reason for this

is that the zeta function of such a curve is known to be a Hecke L-series

with Grossencharacter; one can attach automorphic forms to such objects,

but they are not cusp forms. (c.f. [7 ] ttreorem 2(b).)

The main motivation for the work which went int.o the computations,

the results of which are recorded in g5.l - 55.5 was to be able to state

precisely a conjecture relating aut.omorphic forms for congruence subgroups

of GL(2,K) with elliptic curves defined over K.. That such a connection

exists is suggested not only by the well known results for the case when

the ground field is Q, but also by the general philosophy relating

automorphic forms to L-series which satisfy a functional equation, via



t5v

a generalization of the Mellin transform. However, although this very

general approach certainly predicts a connection between elliptic curves

defined over a complex quadratic field and the cusp forms of weight 2

discussed in chapter 3, it is hard to extract from it the precise

nature of the connection. we hope that our claim does this to soue

extent.

In Ill] and 112f, Mennicke and Grunewald also discuss this question.

Their computations of newforms at prime Ieve1 give some evidence for

Claim A, and they also remark that, as in part (iv) of the claim, one

would not expect a cusp foro to correspond to an elliptic curve with

complex multiplication by the ground field K. They also suggest that

in certain cases a newform uay exist in v+1a; for some ideal a without

a corresponding curve of conductor a, but our results do not seem to

suPport this: however, it is possible that the situation at a low Ieve1

is not typical. 0f course, ir would be desirabre to have a procedure

for constructing an elliptic curve directly from a newform f(z), as

Tingley did in the rational case by means of calculating the periods

of the differential Znif(z); but all efforts in this d.irecrion have so

far been unsuccessful. Reca11 that in the rational case, \(c) has, as

well as a complex structure, an algebraic structure as an algebraic

curve Xo (N), and that elliptic curves arise as one-dimensional factors

of the Jacobian Jo (N). By contrast we have (apparently) no complex

or algebraic strucrure on Ao(a)fnl Uy means of which to generalize this

construction. We have tried calculating the periods of the differential

corresponding to a newform, integrated around a corresponding pair of
I-

cycles in v' and v , for some of the newforms of 55.1: but the numbers

which result have no obvious interpretation in terms of the expected

elliptic curve. The results of these integrations are recorded in the

last secEion of this Chapter.

Aceording to claim A, it is only the newforrns in v+(a) which are



relat.ed to elliptic curves. However, there is a connection between

+-V and V . We state this first as a second c1aim, for Ehe case K = a(/-l).

Claim B There is a one-one correspondance between newforms in V+ and

newforms in V , not necessarily ac t"he same level: if the 1eve1s are al

and a, resectively, then either al = a2 n (l+i)O o, "2 = "l O (t+i)4.

To make the correspondance in Claim B clearer we give some exarnples.

There is a newform in v*((O*oi)) which grows into two oldforms in v+((12));

in V ((12)) there is a newform. These two newforms have the same

eigenvalue for Tr if 1T = I (mod 2), and hence eigenvalues of opposite

sisn for T if n = i (nod 2), by (3.3.5). Note that (12) = (6+6i) O (l+i)l
"Tt

In the other direction, there is a newform in V-((8+2i)), which grows into

two oldforms in V ((10+6i)) and three oldforms in V ((16+4i)); now

(16+4i) = (8+2i) 4 (l+i)4, and there is a newform in v*((t6+4i)) whose

eigenvalues correspond as before.

One other example: Mennicke in Ill] observed that there is a newform

in V ((11+4i)), but (apparently) no elliptic curve with conduetor (tt+Al).

Having calculatea vt(a) for a = (l l+4i), (l l+4i) (l+i), (l 1+4i) (t*i)2,
?L(ll+4i)(l+i)" and (1t+4i;(l+i)-, wB eventually find, as well as five

oldforms in V ((l l+4i) (1+i) o), 
^ newform in v+((l t++i) (l+i)o) r"

predicted by Claim B. Moreover there is an elliptic curve with conductor
/,(1t+4i;(l+i)- (which Mennicke had fotmd), whose Traces of Frobenius

correspond as in Clain A.

We can rephrase Claim B

Theorem Let a be an ideaL

as fo11ows.

ot Tlif such that (1+i)4 oruro"" ".
V(a) such that

Then

(n) I u;

(n) la.

(tt) *

(tt) t

v (a) ->

ifn

ifn

there

(i)

( ii)

( iii)

isamap R2,

*r, = - JR2;

R2rn = (l)t,*,
*2wn = (;F+'

(;) u."".es the

is prime,

is prime,

( l+i) , and

(l+i), and

Here quadratic character modulo (Z): it is +l if r = I



(mod 2), and -l if r = i (mod 2). It follows from (i) that R, maps

+-
V'(a) into v (a) and vice versa; then from (ii) ana (iii) ir follows

that R2 preserves the eigenvalue of T, and W, provided that r = i (mod 2).

Note that every prime ideal of Z[i] has four generators, of which two

are congruent to I and two congruent to i (mod 2). So we can always

choose a generator in such a way that R, preserves eigenvalues. This

was done in the Tables of 55. I in order to make the correspondence

between newforms in V+ and V more striking.

This Theorem will be proved in the next chapter as an application of

a more general result. The map R, is a special case of a whole class

of rtwistingf operators, one for each ideal e of Z[i1, which acts on V(a)

provided that q2 divide" a (here q is either (2) or an odd prime of ztil).

SimilarlR for the other four fields, ttrese twisting operators can be

defined whenever the rsquare of the twistt divides the level. other

examples in the Tables: for a(/-2) there are examples of (l+0)-twists,

for example at 1eve1 (2+5 0) where there are corresponding newforms

simulLaneously in v+ and v (nore that (l*o)2 divides (2+50)). There are

(2)-twists at leve1 (12), and (4)-twists ar leve1 (16). For a(/-3) rhe

twists visible in the tables are rhe (l+p)-twist, at leve1 (15) for

example, and a (2+ p)-twist at 1evel (14+7 p). In general, a q-twirrt

will preserve or reverse the J eigenval-ue according as e is or is not a

square modulo q, where e generates Ehe unit groul { "f 
O*.

Twisting operators will be d.eveloped and studied more systematically

and in detail in the next Chapter.: their existence and basic properties

are readily suggested by the tables of results above. As a matter of

history, the map R, which interchanges v+1a; and V (a), provided that (4)

divides a,was discovered by the author as a means of proving claim B. rt

was only later, while trying to extend the result to other fields, that

the twisting operators of Atkin-Lehner were remembered;. and then it

becanre a straightforward matter of generaLizir.g the results of Atkin and



Lehner in the

operators, as

142

last section of I

developed in the

3 J to produce a

next Chapter.

general theory of twisting

95.7 Some Calcr.rlations of Periods

we refer to section 3.5, and in particular to formula (3.5.3). For a

few selected newforms for Ao(a), where a is an ideal of. Zlil, we ha.re

carried out the following computations: first we determine an element g of

Ao(a) such that the image of the paLh {o,g-} in H,(Ao{a)rnf,e) generares

the corresponding eigenspace. Of the possible choices for g we find one

with lower left-hand entry as smal1 as possible, for reasons of convergence

as explained in 53.5. Then we calculate a large number of Hecke

eigenvalues f,or the newform: in practice we computed the eigenvalue

of Tn for all primes n with norm less than 500. Next we caleulate the

coefficients c(E) of the newform, for f € ZliJ, given the multiplicativiry

and recurrence relations of 53.3: for powers of primes which do not

divide a we use (3.3.9)(i) and (ii); if n divides a bur n2 does nor, we

set c(n) to be minus the eigenvalue of wr, and c(nt) = "(n)t; and if

n2 divides a we set c(nt; = 0 for r > l.

Now we can substitute in (3.5.3). we used a numerical (polynonial)

approximation to evaluate K, (c.f. t ll g9.B). To save rime, we

calculated together the four terms corresponding to associate integers

l: note that in (3.5.3) the only facror, apart from c(E), which depends

on f itself rarher than jusr lgl i" u(n-loE) = exp(-ni(cr[ + G)) (sir.,".

the different n is 2 here). Denote ty I.(f;V) the expression on the right

hand side of (3.5.3) with rhe sum resrricred to rhose E e Ztil with

E = e (mod (2+2i)), for e = l, i, -l and -i. Then clearly
s -Ful - '-l

@.
= (t2+4i)

and I. =T1-1
since QGz) =

Example I a

Here (t+i)4 divides a so rhat the (2)-twist operares: rhere is a



newform in each of V+ and V , with corresponding eigenvalues (equal for

T = I (nod 2), opposire for n f i (mod 2)). v*((t2+4i)) is generated by

M-symbol (3+2i:l) which corresponds to a path {f,1*f} fot any point f, witfr

I t-zi rlY+ = [ztrz++i) 3+2i)
Secondly, v-((12+4i)) is generated by M-symbol (3i:l) corresponding to

{r,y_e} for
( tr*i llY- = [i oz+4i) 3iJ

Let F+ be the form with coefficients from the eigenvalues of V+, and F the

formfromV.Then
+I, (r',Y*) Ar 5. 28n( l+i) I /(l 50) , and

X.(r*,y*) A, 5.28n(l+i)//(160), while

I,(r',y_) A, 5.28n(-1+i)l/(l6o), and

I.(r*,y-) A, 5.28n( 1+i) I/(l60).

Example2 a=(l+i)9

a) There is a pair of newforms in V+ and V corresponding to the curve

IX2 of g5.1. Setting F to be the newform in S+ we have calculated

X, (r,y*) Ar (7.06 + 10. OZi)n/B/2,

X. (F,y+) A, (7.06 - 2.77L)rl8/2,

X,(r,v-) nl (7.05 + 10.00i)rlB/2,

and I. (F,y_) ^i (-7.05 - tl.33i)rl8/2.

b) There is also a pair of newforms in V+ and V corresponding to the

curve IXI of 55. l. Setting F to be the corresponding newforu in S+, we

have

I,(r,y*) A, (-0.OO + 2.97i)n/8/2,

I. (F,y+) N (-0.01 + 9.84i) n/8/2,

I, (r,V_) Ar ( 0.00 - 8.07i) r/8/2,

I. (r,y_) A, (-0.00 - 9. 84i)n I 8/2.and



Example 3 a, = (8+2i), o^ = (15+4i)

There is a newform F, in V-((B+2i)) whose (2)-twist is a

in V+((16+4i)). Denote the corresponding cycles by y and

Il (F1 ,y-) A, (-4.82 + 3.09i)n lz/1a,

I. (r,,V_) N (3.66 - o.4ti)n/2/68,

x,(Fr,v*) N (8.48 + l. 17L)n/2t'68,

and X. (nr,y*) N (8.48 + 8.48i) n/Z/lA.

newform F,

Y+. We have



CHAPTER 6

Twisting 0perators

In this Chapter, we define certain operators on the spaces S(a) of

cusp forms for Ao(a) defined in Chapter 3. Most generally, whenever

we have an ideal b with a rquadraticr character X :(O*/b)* * { I l},

then we will be able to define an operator R* on S(a) provided that

b2 divides a. Under suitable conditions, such R* will interctrange the

two eigenspaces for the main involution J; their effect on Hecke and

W eigenspaces will be determined; and in certain cases the twisting

operators will enable us to construct newforms from oldforms. The

motivation of this work was to prove Claim B of 55.6, by finding an

explicit connection between V+ and V over a(i): newforms in V did

not seem to correspond to elliptic curves directly, but there was

always a related newform in V+, possibly at a different 1eve1, which did

have a corresponding elliptic curve.

These twisting operators are discussed fu11y in the rational case by

Atkin and Lehner in Section 6 of [ 3 ]. The characters X which are used

there are either the quadratic character modulo an odd priroe q, or the

characters modulo 4 and B. In order to determine all quadratic

characters for a complex quadratic field K we have to determine the

structure of (0,,/b)' for an arbitrary ideal b of Q,. This will be done.K K

in the first section. In the second section, the twisting operators

will be defined and their properties developed. fn the third secLion,

we will prove a'result, analogous to Atkin-Lehnerts Theorem 6 for cusp

forms over Q, showing how certain newforms arise as twists of clCforms.

Lastly, in the fourth section, we illustrate, with examples taken from

the results of ChapEer 5, how the connection between the V+ and V

spaces of newforms arises by means of certain twists.



96. t Quadratic Characters of 0*

By a quadratic characEer of 0* we will mean a surjective homomorphism

X : (oK/b)x + {tl}

extended to 0* as follows: for x . 0K, relat.ively priue to the ideal b,

set 1(x) equal tc 1(x), where I' is ttre reduction of x modulo b; otherwise

set X(x) = 0. The largest ideal b modulo which 1 is defined (that is,

the ideal of smallest norm) will be called the conductor of X.

It is clear Lhat, in order to determine all such characters, it

suffices to determine the characters uodulo prime powers, since an

arbitrary quadratic character will be a product of these, in the obvious

way, by the Chinese Remainder Theorem. For powers of an odd prime p

(that is, one not containing the number 2), this is achieved by the

following leuna.

Lerrma 6.I.I ff p is an odd prime ideal- of 0*, there are no quadratic

charactets with conductor pe unJess e = 1 ; there is a unique chatacter

with conductor p given bq the quadratic res:due sgnboT.

r;e-l (which is odd)

and consists of the residues modulo pe which are congruent to I modulo

p; while G, maps isomorphically onto (0*/p)x und.er reduction mod.ulo p,

so is cyclic of order tt(p)-I, being the multiplicarive group of the

finite field Or/ r. A quadratic characrer must clearly be trivial on

G,, while on G, its kernel must be the (unique) subgroup of index 2,

na:le1y the subgroup of squares.

For even primes the situation is more complicated. tr{e need to

determine the structure of (OK/pe)'rh.ru p divides (Z).

Case l: Ztil Here the unique prime dividing (2) is (1+i).

Proposition 6.1.2 rf k < 3 then (zlil/(t+i)k)x is cyclic of order 2k-t,

generated by i. If k > 3 then

where

(zlil/(t+l)k)' = <i> x (5) x (-l+2i)
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(i) L has order 4;

(ii) . if k = 2rr is even, then 5 has order 2n-2 and -1+2i has order 2n-1 ,

(iii) it k = 2n- l is odd, then 5 and -1+2i both have orde, 2'-1 .

Proof: This is a fairly straightforward matter of verifying thar the

elements given have the orders stated, and that the subgroups they

generate have trivial intersection.

From the proposition, it follows Ehat there are essentially three

quadratic charact.ers with conductor (t*i)k for some k:

k = 2 x,(x) = -l if x 
= 

i (nod 2);
"l

k=4

k=5

+lifx=l(nod2).

Xr(x) = +t if x = +lr ti (nod 4);

-l if x = 1t+2i, Z+i (mod 4).

Xr(x) = +l if x = 
+1,+ i, t(1-2i),t (2+i) (mod 4+4i);

-l otherwise

Ofcourse , Xtb. is another character with cond.uctor (t*i)4,

X21,r and Xtb.b are other characters with conductor (1+i)5

Characters p and & are relatpd to quadratic residues,

following way. First note that both 6 and X3 have value

,rd X1 X3,

the

at i, so

It turns

in

+l

they can be defined on ideals of Z[i ] as well as on elements.

out that, for an odd prime p of ZIL),
/i\_ (z\(1,, &tpr = (;l= Gl

(ii) X3(p) = ffi) 
'where 

as usual the symbot (;) is +l if
square modulo p, and -1 otherwise. This is analogous to the

in Z, where the unique quadratic character of conductor 4 is

while the quadratic characters of conducror 8 are p -> 
Ga) 

and p-+

For the sake of brevity we do not describe all the quadratic

eharacters of even prime power conductor for the other Euclidean

but just give the characters of smallest conductor.

fields,

Case 2: Zlt2) As usual, we ser e - f2; rhe unique prime dividing

(2) is (O). There is a characrer Xl of conductor (0)2 = (2), namely:

01S

sit

p-)

a

uation

/:l\
\p/
| -2\
\ p/



X, (x) = +l if x = I (mod 2);

-l if x = l+0 (rnod 2).

Since X,(-t) = 1, we Eray define X, on ideals of Z[0]. A sirnple check

shows that for an odd prime ideal p,

x,(o)=(+) =(i) . 
:

A1so, zlil/(e)3: (-l) x (l+0), rttein'-four-grggp. So rhere is a

character X, wittr kernel (l+0)r and 1rX, has kernel <-1-e>. There is

also a character X, witfr conductor (0)5 s,rctr that X3(-l) = I and X3(O) =

(Aj t.r odd primes p.

Case 3: Zlp), p = i(1+,/-3) Wrire R = Z[p] for shorr. The ideal (2)

is prime in R, so that (R/(2))'i" cyclic of order 3, generated by p;

so there are no quadratic characters with conductor (2). However,

(x/(z)2)" = (p) x <l+2p>

where p has order 6 and 1+2p has order 21 so there are three quadratic

characters with conductor (2)2: Xr, with kernel (p); Xr, with kernel

(p'> * (l+2p); and X, = XIXZ.

Notice that since 1, is trivial on the units of R, it can be defined

on ideals of R: in fact we have, for an odd prime ideal p:

x, (o) = (+) = (fi)
I Proof: The second bequality holds trivially since -p is a square in R.

Also, (fi) = I if and only if R/p has an element of order 12, which is if

and only if Np = I (mod l2). This is true for an inert prime p, if p hns

the form (p) with p € Z and p = -1 (nod 3), and these are in rhe kernel

of Xl. For split primes p, of the form (a+bp), with Np = a2+a6+b2 = p

= I (mod 3), a simple check shows that p = I (mod 4) if and only if a+bp

is in the kernel of Xr. I

Case 4: Z[cl-], o= l(t+/-Z) In this case (2) splits into two distinct

prime ideals | (2) = (o,) (cl) . I^Ie have
r- .r- *kztoll (o)^ = zl (2*) = ztsll (o)
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From our knowledge of quadratic characters of Z modulo a power of 2, we

deduce that:

(i) There is a character X, modulo (cr)2, namely Xl(l) = 1, Xl(-t) = -t;

similarly there is a character f, modulo <oi2.

(ii) There are two characters modulo (o)3, first, X2, defined by X2(1) =

XrGt) = l, X2(3) = 1r(-3) - -1; and then X3 = X2Xl. Similarly, Ehere

are characters X, "rra X, modulo (o)3.

(iii) There are no more characters modulo powers of (o) or (o).

A simple verif icarion shows that X, (o) = (f)

Case 5: Z[o], o, = i(t+/-tt) In this case (2) remains prime, so there

are no quadratic characters of (Ztcxl / (2)) , since this has order 3. But

(zLcJl?h - <-l> x <o> , where cx, has order 6, so there are three

quadratie characters with conductor (2)2,

X, with kernel (cP;

X, wittr kernel (-l) x (s');

x3 = xlx2.

A simple verification shows that Xr(p) =

96.2 Twisting Operators: Definition and Elementary Properties

Let Q be an ideal of 0* with a quadratic character

X : {o*/e)x -} 1tr}.

Assume that q is principal, generated by an element e of 0". Let. RO =

[l l]r then Rr = [; tJ (in PGL(2)) ror natural numbers ].. we extend

this definition to arbitrary tr e 0* by setting

(6 .2. t) nl ,= [; l] ,

observe that Rl = Rq, that RQ = T =lJ l.J, and that the 1aw of exponents

ho1ds, nlnu - R1*u. A1so, if ), = u (mod q) then n] = nu (rnod A"(a)).qq q q q,,
Now 1et a be an ideal such rhar ea divides a. it , = f' bl is an

lq'" dJ

element of Ao (a), and ). and U are in 0*, we have

/-r\
\p-7'



Rlys-u = la+lqc 0.ry -^'"'l
q q I o'" 4-u{c )

which is in Aot") provided that ld = pa (mod q). Since ad-beqz = I, we

have ad = I (rnod q), so an equivalent condition is that

(6.2.2) p = trd2 (nod q).

So for a given y e Ao(a) and a given )., there is a p (unique modulo q)

such that nlyn-u e As(a).q' q

Fix a set U(q) . 0* which forms a complete set of invertible residues

modulo q. Then we define R* to be a particular element of the group

algebra of PGL(2,K):

(6.2.3) R := I y(l)nf .x refr(q) q

Lemra 6.2.4 (c.f . [3] Lema 29) Let q and. y be as above, and a an ideal-

divisibTe bg q . Let F e S(a), as defined rn 53.3. Then

(i) rlR:s:n.S(a),.
X

(ii) zf (0*/q)'h." exponent 2, then for anq X, the matrixR\ normalizes
,) q

Ao(a), and FIR^ rs jn S(a).

Proof: As remarked in the proof of Lerma 3.3.7, we only have to verify

that FlR., {re"p.ctive1y r;n}l are invarianr under Ao(a). rf y e Ae(a), rher'x q

tr In,) lv = FI I x(rlnlv = rt i x(u)nl = F lR..x reu(q)' q ulfrtql" c 'x

q implies that d2

U=l(modq)by
Lemna 6.2.5 Let

since for a fixed y, differenr ). in u(q) give rise to unique distinct p

in u(q), and x(u) = x(rd2) = 1().)x(d12 = x(tr). rn (ii) the condirion on

= I (rnod q) for any d relatively prime to q, so that

(6.2.2); hence Rl normalizes Ao(a) as required.
q

Qt X, and a be as in the previous Lerwna. Let p be a

prime dividing a to the exact power e, but not dividing q, generated bg

n e 0*. Then if F e S (a) we have

(6.2.0) (FlRx) lr^lr = x{n") (Flwr) lRx.



Proof: 0n1y trivial changes are needed to the proof of [ 3] Leuma 30.

Lema 6.2.7 Let X be a quadratic character with prime conductor p = (n),

and 7et a be an ideal- such that p2 d.ivides a but (p-Z^rp) = (l). Then

for each X with ().,n) = 1 there exjsts ),t such that

(i) X(I) = 1().');
(ii) *h-*l' e Ao(p-1a).

1T 'IT 1T

Proof : Identical to [3 ] Lema 3l (ii).

Reca1l, from 3.2.12 and 3.2.17, that a cusp form for Ao(a) has a

Fourier series expansion of the form (3.2.13);

(6.2.8) F(z,t) = J c(o)H(n lst),1,(n-lor)
oe0*

where n € 0K generates the different 6 of K, and r[,r is lhe additive

character of K, given by U(z) = exp (-2ri(z+z)).

LeE |: (O*/O)* *{, < C: l"l = l}be any charactermodulo an ideal

Q of 0*. Extend X to the whole of 0* by defining X(I) = 0 whenever

(I) + o = 0r Then we can define an operator E* directly on Fourier

series: if F is given by (6.2.5), then we define

(6.2.g) (FlR-)(z,t) := [ 1(o)c(o,)H(n 
lor)rl,(n lar).

^ oeO*

Proposition 6.2. l0 Let X be a

and F a harmonic function with

rlRx =

where g(X) :=

Proof: By (3.2.4) we have
,) 1(FlR')(z,t) = E(z r a , t)'q q

character with conductor q = (q), as above,

Fourier series (6.2.8). Then

e(x).rln.
X

I x (r) U, 
(n-l l/q) .

). mod q

Hence (FlR )(z,t) = ;'x 0

-v
0

= [ c (o)II(n

= 
&, "(o)H(n

-lot) rj.r (n ' qz)
I

-1 -l l'0t)qr(n 'cl(z + a))

-'l -1 -1 1'0t)U(n 'sz)rl(n '#).
q

- -l 1

) x(r)r!(n'a1):"q
xood q

.-1

) x (or) U(n
). mod q

-t
c (o)H(n I

X(o) c(o)n(n lot)rl,(n-lor) Is
q

= s(x). (r ln*) {r,t)
since if (o,q) = I then



I x(or;rPrn-t $l I x(rl'l'(n-l
truodq = ).modq

while if (o,q) = (l) then X(cl) = 0 and

I x(r)if(n-'*, = e.
). uod q

Proposition 6.2.11 under the hgpotheses of the previous Proposition,

suppose also that F e S(a) where a is divisible bg q2. r-et O, = (rr) le

a prime not dividing d, and P, = (n2) a prime dividing a to the exact

powet e. Then

(r lE*) lr,r, = x(rt ) . (r lrr,, l\t

*, = s(x),

(i)

(ii) tr l\> lwn = xlnf r . {r lw,rr) ln* ir y(rr) * o;'2 
= x(.;. (F lJ) li.* ,^rr" re as Juuu, (e ) = of, ana ,= [; ?J 

.

Proof: Part (ii) follows from Lenrma 6.2.5 and Proposition 6.2.11. Part

(i) follows from inspection of the Fourier series, using (6.2.9) and

(3.3.7): the coefficient of (FlRy) lr, ,t o e 0* is
/ "\
(N(r)X(o1T)c(on) + x(a/n)c(a/n) jstx),/\

= X(n)X(o)(N(n)c(on) + c(o/n) 
)e{x)

since X(qn-l; = 11'n)1(o) if nlcl; on the other hand, the coefficient of

frlt I ln ar s is'fi'' v,u/\

x(o,)(u1n)c(on) + c(o/n))s<xl 
_1.

As for p"r. {iii), first note tha't *}, = ,*'-'tr. Then

(r'lRx) lJ = 
,. *lo ox(r)r 

lnr.r

-1.
= IX(I)rl.lne n 

_,
= x(e) r x(e-lr) (F lr) l*;
= x(e) (F lJ) lRx as required.
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96.3 Twisting Operators: Newforms from Old

For primes r dividing the ideal a, there

S(a) which is siroilar in some respects Eo T

F is a haruonic function, define

(6.3.1) rlun:= , -1, *tl[J ]]AmodT

is an operator U, defined on

for n not dividing a. If
1T

so that (Flu/ (z,t) = ^ I- F(+'fl. A calcularion similar to
). mod n

the derivation of (3.3.7) shows that if F has a Fourier series with

coefficients {c(o) }, then F lu, tras Fourier coefficients {c(on) }.

Lema 6.3.2 rf F € S(a) and trz divides a, rhen Flu, . s(a(r)-l).

Proof : As for [ 3J, Lemra 7.

Lema 5.3.3 rt (,rt1 t (rr) rhen (Flrr,)lrn, = (rlurr)lTr,.

Proof: Let F have Fourier coeff.icients {c(o)}. Then by (3.3.7),

FIT- has coefficienrs iu{n,)c(ont) + c(onll)}, and so (Flt- ) lu- has''l I' 
-r - 'l'' n2

coefficients {u(n,)c(cm, n2) * c(onrn, ') }. Applying the operators in the

opposite order yields the same coefficients. Note that our convention

that c(B) = 0 whenever g i O*, yields

c ( (crlnr )n) c ( (onr) /n ,) ,

as n, lo if and only if n, lotr, since (nr,nr) = (l).

Lerma 5.3.4 tret F e S(a) where a is divisibTe bg q2 and 7et y be a

quadratic character with conductor q. Then for 4nq Tt dividing a,

(F lRx) lun = x(n) (r lu,r) In*.

Proof: Imnediate from Ehe Fourier series. Note that the result is

valid even if 1(r) = 0, for then the left-hand side is zero a1so.

Leuma 6.3.5 If F is a newform zn S(a), and 12 dirides a, then flUr, = 0.

Proof: Since F is a newform it is an eigenform for all the Trr for t' I a,

with eigenvalues a(ri'' ) , say. Then by Leuma 6.3. 3 we have

(F lur) lrn, = (F lTr, ) lur = a(n')r lun

and so FlUr, which is in s(a(n)-') o, Lema 6.3.2, has rhe same eigenvalues

as F for all n' I a. Since f lU, is an oldform in S(a), it follows from



the results stated at the end of 53.3 that f lU, = O.

Proposition 6.3.5 Let G be a newform for Ag(b) for some ideaL b dividing

a, and. Jet G* be a member of the correstrnnding'61dc7ass' for Ao(a): that

is, 6tx is a Tinear combination of -'f' ?'l for various divisors

r or ab-r. rr Tt is a prime or)ro'r","n""'",-".i:.'1.";: 
"ln"""rlr"",ororm 

or

both lJ and W then r does not d.ivide ab-I.T1l
The proof of the analogous proposition in the rational case is in [ 3],

as part of the proof of Theorem 5 there. As it is fairly long and

entirely technical we omit it here.

Corollary 6.3.7 A form en S(a) which is an eigenform for each Tn for

r I a and each lJn and W, for n I a, is a newform.

Corollary 6.3.8 suppose F e S(a) js an eigenform for a77 the ln fornl a ,

and there exists Ts I a such that F is an eigenform for each U, and W,

for 1l I a except T = 'rI0. Then F is a member'of some oTdcTass in S(a)

defined bg a newf'orm G e S(b) where b divides a and. ab-l ," a power of (no).

Proof: Since F is an eigenform for T, for each r I a it follows that F

is a member of some o1dc1ass, by the results stated at the end of 93.3.

If this oldclass is defined by G, a newform in S(b), then the Proposition

shows that only Ts can divide ab-I.

We now show how the twisting operators RX can, under suitable

circumstances, produce newforms. For simplicity we restrict to the

case where the conductor of X is an odd prime ideal p; similar, but

tnore complicated, results hold for other X, which would have to be dealt

with for each field in turn

Let a be an ideal divisible by p to the exact power e, where e > 2 so

that we can define R* on S(a). Let F be a newform in S(a) and set F* =

rln-.. If F* is not a newform, then as it is an eigenform for all the'x
TrT, for nr I a, and for Urrr and Wrr, for fi' I a, except 1T' = T, by

Corollary 6.3.8 we have

,!o*, ('r [;' ?] )
(xeC)rF*=
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where G is a newform in S(b) and b-1" = pf for some f > l. If the

Fourier coefficients of F* and G are a(o,) and b(o) respectively, we thus

have
f.

(6.3.9) a(a) =,I=,J xrb(on-r).

Taking cL= I we find that a(t) = x.b(l) = *O (since G is a newform and

thus has first coefficient l). If T I cl then a(o) = 0 since X(o) = 0;

if ri / o then (6.3.9) shows that

a(o) = *Or(o) = b(o)

(where *O = "(l) = I since a(l) is the first coefficient of F which is a

newform). Ilence we obtain the Fourier series of F* from that of G by

deleting all terms corresponding to o e 0* such ttrat n' I o. Since F =

Fol\, (because p'la,by Lemma 6.3.5) we thus have F = Gl8
'Xt'JX

This implies that F is a cusp form for &(c) where c = bp8 and g =

max(e-f ,2) - (e-f), and so

(e-f) + max(e-f ,2) - (e-f) t e, or

max(e-f,2) > e.

The conditions e >2 and f > I then give onL.y the possibilities e = 2,

f=1or2.

Conversely, if G is a newform in S(ap-l) or S(ap-2) where d divides

a exactly, define f = Gl&.. This is certainly in S(a); it is an'x
eigenform for all Unr and Wn, for 1Tr I a and (n) I (n'). As for n itself :

for each ), (nod r) we can find ).' with X(tr) = X(tr') such that nh nl' .
1I 1I ?T

-lAo(ap ') by Lerma 6.2.7 . Then

c lRh = c lR-l' .rTTlT I r
Sumring over a set of invertible residues I modulo T gives

(clR)lw = v(-l)GlR,X,,TT/\rX
and so F is an eigenform for Wn a1so. Moreover F lUn = 0 by Lemas 6.3.4

and 6.3.5, so in fact F is an eigenform for all Wrrr and Un, for n'l 6

By Corollary 6.3.7 it follows that F is in fact a newform in S(a).

We sum up the preceding discussion in the following.
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Theorem 6.3.10 Let Xbe the quadratic character with conductor p, where

p is an odd prime ideaT generated bq an eTement T of 0K. Let F be a

newform rn S(a) where p2 divides a, and set F* - glRX.

(i) ff p3la taen F* is also a newform rn S(a), possibTg equaT to F.

(ii) rf p2 divid.es a exactTg and F* is not a newform jn S(a) , then

there exists a newform G jn S("p-]) or S(rp-2) such that

a) the Fourier series for F* is obtained from that of G bg

deleting the terms corresponding to c e 0* such that 'll divides a;

b) the eigenvalues of F* for a7l- Tn, (for n'I 
") and. for Wrr and

UtT, (for rt I a and (n) = (nr)) are the same as those of G;

c) Flwr = X(r)F.

converseLv, if G is ang newform;n S(ap-2) or S("p-l ) where pz diuid.ut

d exactlrl , then F:= Gln-.i" a newform rn S(a) with eigenval-ues derivable.X
from those of G bg Lenanas 62.6, 6.2.11 and 6.3.4 tor (r) t (n'), and

r lun = o, r lwn x(r)r.

56.4 Application: The Correspondence between V+ and V

We end by applying the results of the previous sections of this Chapter

t.o prove that, in the case of O(/-l), the connection between spaces of

newforms in V+ and V is indeed achieved by means of the twist Rr, as

stated in 95.6. trIe also prove similar results for the other Euclidean

fields.

Case a(/-l) Let K = a(i), where i = /-1 as usua1. Let X : Z[i] + {tl1r1'1

be the character defined by

X(o) = Q if o=0(modt+i);

+l if o = I (mod 2);

-l if o=i(nod2).

Then X has conductor 2; write R, for the twisting operator R*. It is

now clear that the Theorem of 55.6, which \^re restate here, is true.
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Theorem 6.4.1 Let a be an ideal- ot 7li) such that (l+i)- divides a.

f1t

ftt

ows

and

hen

Then

(i)

(ii)

( iii

Proo

s t_m1

sinc

the map

R2J =

R2Tr, ='

) R2wn =

f: Part

1arIy, pa

e if (n)

Case a(/-3) Recatl

Theorem 6.4.3 'Let

RZ : V(a)

- JR2;

(#I"-, ,
(;F"., ,
(i) fo11

rts (ii)

= (l+i) r

+ v(a) satisfies

is prime, (n) . (l+i), and (tr) l( 
";

is prime, (n) z (l+i) , and {rr)" I arand te+' | ".
from Proposition 6.2.11(iii) since X(i) = -l;

(iii) fol1ow from Proposition 5.2.1 I (i) and (ii)

x<rrl = (I), the quadratic character modulo 2.

that p = i(1+/-3). We have the following result.

y be one of'the two quadratic characters ot Zlp)

case a(/-2) Set K = A(0), where 0 = /-2; the unit group of O" = Zl/-2f

is generated by -1. To interchange V+ and V we need to twist ty RX

for some character 1 with X(-l) - -1, by 6.2.11(iii). There is no such

characrer with conductor (2), but there are trnro possible characters

modulo (4): they were cal1ed X, and X,XZ i, 96.1. Hence for Q(0) we

have the following result.

Theorem 6.4.2 IEt X be one of the two guadratic characters ot 7107 with

cond.uctor G)4, and a an id.eal ot ZIO) such that (g)8 airrlaes a. Then

the map R- : V(a) -+ V(a) satisfies
X

(i) R.,J= -JR.,;AA
(ii) *Xr, = 1(tt)TrR* it (r) = (0);

(iii) R.X_ = X(njW_n.. if (r) = (0), and n divides a to the exact power e.
XTT " TX

+-As a corollary of (i), we see that R, interchanges V (a) and V (a)

for an ideal a such that (O)8 airriaes a. To illustrate this, we refer to

Tables 5.2.2 and 5.2.3. There is a newform in v*(e5), with a correspcnd-
o

Ing newrorm 1n v (e"); also there is a eonjugate pair of newforms in

V-(07), whose twists occur as a conjugate pair of newforms in V+(e8).

157
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with conductor (2)2 such that X(p) - -1,

such that (Z)4 aiviaes a,' then the map

(i) **r=-JRX;

(ii) R..T_ = X(n)t_n- it (n) r (2);
xT lix

(iii, RXI^I, = X(niWrn* if (n) * (2) l and 1I divides a to rhe exact power e.

There are no illustrations of such a twist in 55.3, because the only

ideal a in the range of the tables divisible by (2)4 is (Z)4 itsetf, and

dimv((z)4)=0.

and

R:
X

7et a be an ideaL of Zlpf

v(a) -+ v(a) satisfies

case Q(/-7)

2 ir Zla); so

. .2conductor (o,)

t has conductor

Theorem 6.4.4

Write a = l0+/-7) and 1et ). be one of the primes dividing

). = o or ). = 6. There is a quadratic character X with

such that X(-l) - -1, and similarly the conjugate character

(d)2. So we have the following result.

Let V be one of the character.s X,t with cond.uctor (x)2 ,

sag. Let a be an ideal of Zlaf such that (X)4 aiviaes a. Then the

^ap R, : V(a) * V(a) satrsfies

(i) *,rr=-JRU;

(ii) *,rrr, = if (n)rrn* ff 0r) = (tr);
e(jji) RUW' = rl.r(n)Wnn, :f (n) r (l), and t divides a to the exact Power e.

To illustrate this, we refer to Tables 5.4.2 and 5.4.3. There is a

newform in V+((7+3o)) whose twist is a newforu in V-((13-7s)): here,

(7+3o) = it+zcl) (E)3 and (t3-7cr) = (t+2o) (o)a; in Table 5.4.3, the newform

conjugate to the latter is given, in V 11e+Zo)). A1so, there is a

newform in V+((2-7ct)) wirh a corresponding newform in V-((14-5o)), whose

conjugate in V ((9+5o)) is given in Table 5.4.3. Here, (2-7d = (cl)31t*Zcl)

and (14-5o) = (o)41t*Zq).

gqse a(/-tt) Ser 0 = l(l+/-tt). Now (2) is prime; there are no

quadratic characters with conductor (2), but there are three with conductor
,(2)-, of which two satisfy X(-l) = -1. Hence we have the following.



Theorem 6.4.5 IEt X be one of the quadratic characters of Zlo") with

conductor (2)2, satisfgins XGI) = -l . Let, a be an ideaT of Zla] with

Q)4 | a. ?hen R, : V(a) + V(a) satjsfjes

(i) ,*X = *rr,

XinJn.,w* jf (T) t (2), and tt divides a to the exacr por^rer e.xI
no examples of these twists in Tables 5.5.2 and 5.5.3, since

levels a covered by those tables is divisible by Q)4.

(ii) tn*X = X(tt)R*T, -r.f (n) * (2);

fijj) W R =TIX

There arc:

none of the

We finish by giving one last example from Q(i) to illustrate Ehe

etween V+ and V 
-, the correspondence between V+ and

elliptic curves, and to show how twisting a newform corresponds to

twisting the corresponding curve.

At 1eve1 (10) for A(i), there is a newform in v*((t0)), and a correspond-

ing elliptic curve y2 = x3 + x2 - x (number 6 in Table 5.1.4).

Applying the (2i-l)-twist, we obtain a newform at 1evel (10)(2i-l) =

(20i-10), and because i is not a square modulo (zi-l), this newform is

in V ((20i-10)). There is no corresponding curve. If we then appl! R2,

in crder to obtain a newform in V+, to the latter, we find., as expected,

a newform ar tevel (20i-10) n (t+i)4 = (4Oi-20), in V+((40i-20)).

Moreover, if we twist the original curve by 2L-1 we obtain the curve

y2 = *3+(2i-1)x2- (2i-tlx

which has conductor (4Oi-20) and corresponds to the latter newform.
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