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ABSTRACT

Modular Symbols
by J.E. Cremona, Worcester College
Thesis submitted for the degree of D.Phil. at the University of Oxford

Trinity Term 1981

In this thesis, an algorithm is given for computing certain spaces
of automorphic forms defined over Euclidean Complex Quadratic Fields,
by means of calculating explicitly the actimof the Hecke algebra on
the first rational homology group of hyperbolic upper half-space
modulo a discrete subgroup, which is a congruence subgroup of SL,(O.)
where K is the field in question. The motivation for this is to
provide evidence for a precise conjecture, similar to Weil's
conjecture over the rationals, relating certain of these forms
with elliptic curves defined over K.

Extensive tables are given of the results of implementing the
algorithms on a computer, giving the dimension of the space of cusp
forms of weight two for T'p(a), where a is an ideal of O, with norm
less than a certain bound, together with the splitting of the space
into eigenspaces for the Hecke algebra, and the first few Hecke
eigenvalues for the newforms at each level. We also give tables
of elliptic curves defined over K, with small conductor, with the
Trace of Frobenius at the first few primes: here the conductor was
found by implementing Tate's algorithm on the computer. The curves
were found by a systematic search procedure.

Lastly, we explain certain connections within the tables by
proving some results by means of an extension of the theory of
Atkin-Lehner to the present situation. In particular, we show that
newforms always occur in pairs, with opposite eigenvalues for a
certain involution, not necessarily at the same level.
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INTRODUCTION
—_ VN

The aim of this thesis is to provide evidence for an analogue of
Weil's conjecture, that every elliptic curve defined over Q is parametrized
by modular functions, for complex quadratic fields. A large amount
of evidence exists in support of the conjecture in the rational case:
see, for example, the tables in Volume IV of the Antwerp Proceedings [2];
also, the conjecture has been proved in certain special cases: for example,
in the case of elliptic curves over Q with complex multiplication, Before
One can even state g conjecture for complex quadratic fields, one must
define what is meant by a "modular function' over such a field, and in
order to collect evidence for the conjecture, one has to have a method

of calculating these objects in particular cases. Indeed, it was only

method of calculating automorphic forms over g complex quadratic field,
and with carrying out the computations for the Euclidean fields.

To set the Sscene, and for later reference, we start by pPresenting a
brief summary of the theory of modular forms and elliptic curves over the
rational field Q. This is the content of Chapter 1. No attempt has
been made to be complete in thig survey: only those aspects of the
rational theory which will be referred to later have been included, For
4 more comprehensive Survey, see the article by Birch and Swinnerton Dyer
in Antwerp IV (op.cit.).

Chapter 2 is spent in developing the geometry of hyperbolic upper
half-space, and in particular the action of certain discrete groups

thereon. The main references here are Beardon [4] and Swan [20].



Then, in Chapter 3, certain functions on this space are introduced, which
will play the rdle of the 'cusp forms of weight 2' of the rational theory.
Our approach here largely follows that of Weil in [24 ], but avoids the

use of adé€les and is more elementary in nature. As in the rational case,
one calculates the cusp forms of weight 2 by means of the action of the
Hecke algebra on homology: the heart of the thesis lies in Chapter 4,
where it is shown how to generalize modular symbols in order to provide an
algorithm for computing the homology of upper half-space modulo a congruence
subgroup, and the Hecke action on homology. The algorithm is given
explicitly for each of the five Euclidean fields, with some remarks on

how one would proceed with the others. It is a generalization of an
algorithm given in Manin [10] for the rational case. While the derivation
of the algorithm is highly geometric, the end result is purely a question
of algebraic manipulation of arithmetic symbols, and is suitable for
implementation c¢n a computer.

Chapter 5 consists largely of tables of the results of the computations:
for each of the Euclidean fields, and for each ideal a in such a field
with Na less than some bound, we give the dimension of the space of cusp
forms of weight 2 for ['((a), with a list of the first few Hecke eigen-
values of the newforms at each level. Also included are tables of
elliptic curves for each field with small conductor, found by a search
procedure. Some remarks are made on the computations themselves, as well
as a discussion of the results in the tables. Certain of these results
were already available in work of Mennicke and Grunewald [11], [12],
who use a slightly different approach.

In Chapter 6 scme of the patterns and regularities in the tables of
the previous Chapter are explained by means of certain 'twisting
operators'. These are straigptforward generalizations of the Rq operators
of Atkin-Lehner in [3]: for example, one finds that newforms always occur

in pairs, not usually at the same level, with opposite eigenvalues for



a certain involution, and that only one of each pair seems to correspond
to an elliptic curve. Also in this Chapter is a development of the
theory of Atkin-Lehner, generalized to a complex quadratic field; some
of this has already been provided by Miyake [13] in the more general

context of automorphic forms over a general global field.



CHAPTER 1

Modular Forms and Elliptic Curves over Q

This Chapter is a survey of the theory of Modular Forms and Elliptic

Curves over the Rationals. We have restricted our attention to those
aspects of the theory which will be referred to later. For the theory
of Modular Forms, the main references are the books by Lang[g9 ] and

Shimura [17]; for Elliptic Curves, see Tate's article [9;]; for
the connections between them, see Antwerp IV [2] , and especially the
article there by Birch and Swinnerton Dyer.

In the last section we describe the contents of the remaining

chapters of the thesis.

§1.1 Geometry of the upper half-plane

+ . 5. .
The group GL (2,R) of real 2X2 matrices with positive determinant acts
on the upper half-plane
H := {z e C: Im(z) > 0}

according to the familiar rule

(a b az+b
(1.1.1) [C d} (z) = —3

Extend H by adding the point i® at infinity, and the real line, to
obtain H* := Hu R u {ix}; then [i Z] sends -% to 1 and i« to %
(if ¢ = 0 then both of these quotients are to be interpreted as ix).
The extended upper half-plane H* is given the standard topology (c.f.
Shimura [17] §1.5),and a metric ds? = (dx? + dyz)/yz, where z = x + iy,
with respect to which its geometry is hyperbolic, and GL+(2,R) is its
group of isometries.

Next consider the action of a discrete subgroup of GL+(2,R), for

instance T = SL(2,Z); here 'discrete' means discrete in the matrix

+ . 3
topology, where GL (2,R) is identified with a subset of R* in the



obvious way. It is a fact (c.f. Beardon [ 4 ] Theorem 4.2) that a

+ : . D cE @ . *
subgroup of GL (2,R) is discrete if and only if its action on H is
*
discontinuous, in the sense that every compact subset of H meets only
a finite number of its images under the action. A fundamental region

for the action of T is given by the triangle F with vertices at iw, p

and w (where p = exp(mi/3) and w = p?); the two vertical sides are

|

identified by the action of T = [0 1

] which takes z to z+l; the

bottom, a circular arc from p through i to w, is self-identified by

S = {? —O] which sends z to =1/z and thus fixes i1 while interchanging
o0 and w. The orbit of iw under T consists of {i®»} , Q; these points
are called cusps. The point at infinity is called i~ in this context

to emphasize that as z = x + 1y approaches the cusp in F, the real

part x is bounded, while the imaginary part y tends to infinity.

If G is a subgroup of finite index k in T, and {al,az,...,ak} is
k
a set of right coset representatives for G in I, then jylqu is a

%
fundamental region for G in H : it is a (hyperbolic) polygon with
a certain number of edges identified in pairs by elements of G. The
*
quotient space XG(C) := G\H can be given a complex structure (c.f.

Shimura [ 17] §1.5), with respect to which it is a compact Riemann

2miz/h

surface. In particular the local variable at iw is e , where

I h
01

%
There is a natural projection @w: H — XG(C). The only points of

h is the smallest positive integer such that [ ] belongs to G.

H which are fixed by nontrivial elements of I are those in the orbits

of i and p (which are fixed by S and TS, of orders 2 and 3 respectively);

the images of these orbits under @ are called elliptic points of XG(C);

the images of Q@ u {i»} are called parabolic points, or cusps; both

sets are finite, and ¢ is unramified outside them.

§1.2  Congruence subgroups

For a given positive integer N we define the following subgroups of I:



r(v)

{
{

Note that T,(N) 5 I'(N); and a group G with T(N) <G < T is called a

eT:az=dz=1,b =zc =0 (mod N)};

o' O

0 PP

Iy €T :c =0 (mod N)}.

congruence subgroup of level N; 1in general, a congruence subgroup is
one which contains T'(N) for some N. A short computation shows (c.f.
Shimura pp. 20-24) that

3 =2

NI (-p )

)

[ T: ()]

1

el [r:r,M)]= NT (l+p

where in each case the product is taken over the distinct primes
dividing N.

Write (C) for X () There is a smooth projective curve,
P

T'o(N)
denoted X ,(N), such that XN(C) is precisely the set of complex points

on X,(N).

§l.3 Modular Forms

Consider functions f: H -~ C . If o= [2 2] is in GL+(2,R), and k
is a non-negative even integer, we define a new function (flq)k by
(1.3.1) (£l (2) =  £(az)(ad-be) F(ezra) ¥,

Let G be a subgroup of T of finite index.

Definition 1.3.2 A modular form of weight k for G is a function

f: H - C satisfying
(1) f is meromorphic on H;
(i1) (fla)k = f for all g € G;
(iii) f is meromorphic at every cusp of G\H*°
For the cusp iw, condition (iii) means the following. Because of
condition (ii), f is invariant under z =+ z+h where h is the width of the

Zﬂiz/h)

cusp at i® as in §l.1, and we can thus write f(z) = F(e

for some function F(q), meromorphic in the domain 0 < |q| <r
for some r>0. Condition (iii) means that F is meromorphic at q = 0.
The condition at other cusps can be reduced to this case by using a

suitable element of T to map the cusp to iw. For more detail, see



Shimura (op. cit. §2.1).

A modular form of weight O for G is a modular function for G, and
can be written as @og for some function g on XG(C), where ¢ is the
projection of §1.1,

A modular form of weight 2 for G satisfies
(1.3.3) f(oz)d(az) = f£f(z)dz
for all a € G, by (1.3.1) and (1.3.2)(ii); so f(z)dz is én invariant
differential and can be written as o & for some differential w on
XG(C). We will mainly be concerned with forms of weight 2, and will
frequently omit the subscript 2 and write f|a for (f[a)z.

A modular form £(z) is called a cusp form if the associated function
F(q) vanishes at q = 0. Denote the space of cusp forms of weight k
for G by Sk(G). In particular for G = T((N) we may take h = 1 since
[é }} e To(N) for every N. So a cusp form of weight 2 for I'y(N) is a
holomorphic function f: H -+ C such that
(1) f(az)d(az) = f£f(z)dz for all a € Ty(N);

(ii) £(z) has a Fourier expansion anl anqn , where q = e2ﬂiz, and a e c.

This sets up a one-one correspondénce between cusp forms of weight 2
for G and regular differentials on XG(C).

Using the algebraic and complex structures on XG(C) one can compute
a formula for the dimension of Sk(G) for various subgroups G of T': see
Shimura §2.6.

The definition in (1.3.1) of the action of GL+(2,R) on forms of
weight k can be extended by linearity to the real group ring of GL+(2:R)5
explicitly, if rj € R and aj € GL+(2,R), then
(1.3.4) | B rjaj)k = X rj(f|0Lj)k.

We can now define some particular elements of this group ring: for any

positive integer m,

- Z (n/d b]
(1.3.5) Tm o= d%m b mod d [ O d

d>0

The matrices appearing in the above sum form a set of right coset



representatives for I in the set of all integer matrices of determinant

m. In particular, when m=p, a prime, we have
p-1
(1.3.6) T o= 3 [1 a] [P 0]
P 2=0 0 p 0 1
so that -
=ik z+a ik
(£]T), (2) = I £ ) + p? f(pz).
| 5k p ( - P P

8 . . : : n 2Tiz
Substituting in the Fourier expansion f(z) = Zanq (where q = .e )
we find that

(o]
ik ¥ n
1.3. = p° + p. o

(1.2.7) (fITp)k(z) P o) (a, *pea ;)

where we interpret an/p as 0 when p does not divide n.

The Hecke algebra is the algebra generated by all the Tm; it

preserves Sk(T), and has the following properties.

(1) TT =T if m and n are relatively prime;
mnn mn

.. pO ; : ;
= +1 + s «T_r=i f s
(i1) Tper Tpr P {O P] pr 1f p 1s prime;
(iii) The algebra generated by the Tm is also generated by the Tp for
p prime, and is commutative;

(iv) There is a formal 'Euler product' identity

= =g @ A =5 p O I=28.=7
ngl Tn'n T prgme LT Tp.p * [O p]'p ) s
(v) If f£(z) = Zanqn is an eigenform for all the Hecke operators, say

# 0, and if f is normalized so that a, = 1

Tf=Af forn>1, then a
n n 1

1
then a = An for all nj;

(vi) There exists a scalar product (the 'Petersson inner product') on
Sk(F) with respect to which the Hecke operators are Hermitian, and hence
there is a basis of Sk(T) consisting of forms whiéh are eigenforms for
all the Hecke operétors.

The Hecke action on Sk(G) for proper subgroups G of T is more
complicated to describe. In the case of G = I'((N), write SN for Sk(G);
then for (m,N) = 1, the operator Tm takes SN to itself, and for the
smaller set {Tm : (m,N) = 1} properties (i) = (vi) still hold with
obvious modifications.

(0 -

Another important operator is induced by W = [

1 .
N O] which on H



sends z > =1/Nz ; this matrix normalizes ['((N) and so induces a
transformatiop of XN(C) which is an involution since Wz, which 1is
[N 0

0 N] , acts trivially; it commutes with all the Hecke operators.

Secondly, complex conjugation is also an involution of XN(C),
corresponding to the transformation z - -z (reflection in the
_ : * . . 2miz 2mi (-z)
imaginary axis) on H , since the conjugate of e is e .
Conjugation commutes with W and all the Hecke operators, so that there
is a basis for SN consisting of eigenforms for all the Tp (for p 1 N),

for W, and for conjugation.

If f(z) € SM for some M dividing N, then the function z - f(kz) belongs

to SN for any number k dividing the quotient % . Such forms are called
oldforms; an eigenform which is not an oldform is called a newform; it

will be orthogonal to all the oldforms with respect to the Petersson

inner product.

81.4 Elliptic Curves: their Zeta Functions and Conductors

Let E be an elliptic curve (an irreducible non-singular algebraic curve
of genus 1, with a distinguished poiﬁt) defined over Q, with equation
(1.4.1) y? + ajxy + agy = x° + a2x2 *ax+ag
(where the point at infinity is the distinguished point). Assume that
the coefficients a; are (rational) integers, and that the discriminant A
is as small as possible under this condition. (The discriminant is
given by a polynomial in the a;s and its non-vanishing is a necessary
and sufficient condition for E to be non-singular; for a formula, see
Tate's article in [2 ]). For a prime p, we can reduce the coefficients
a; modulo p to obtain a curve Ep over GF(p). If p does not divide A
then Epis also an elliptic curve, and we may define its L-series as

LE,w = (- o - o))
where o and a, are the characteristic roots of the Frobenius map

Py

(x,v) *’(xp,y which is an endomorphism of Ep’ and satisfy

i
@) o, =p; o = Ja, = p?;
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(i1) o oo, = 1+ p-M (the '"trace of Frobenius');

here M is the number of points on Ep (this is one more than the number

of solutions of (1.4.1) modulo p, because of the point at infinity).
On the other hand, if p does divide- A, then Ep has a singular

point P, defined over GF(p). There are three possibilities for P:

(i) P is a double point with each of the tangent directions defined

over GF(p): then define L(Ep,u) = (1 - u)_l;

(ii) P is a double point with tangent directions conjugate over GF(p);

then define L(Ep,u) = (1 + u)_];

(1ii) P is a cusp: then define L(Ep,u) v= 1,

The global zeta function of E is obtained by taking the product of

the local L-series over all primes p:

S

(i) g (s) = HL(Ep,p_)-

; 3 i : . .
This converges for Re(s) > 1t 1s conjectured that it has an analytic

7;
continuation to the entire s-plane and satisfies a functional equation
similar to that of the Riemann zeta-function.
In order to write down the functional equation precisely, we must
first define the conductor of E. This is
(1.4.3) TR B
where the product is over all primes p, and f is determined as follows:
£=0 if p | A;
f=1 if Ep has a double point;
£z 2 if Ep has a cusp (if p / 2 or 3 then f = 2 exactly).
There is an algorithm for determining f in any particular case, given in
Tate's article in [ 27 .
Now if we let
£.(s) = NN ()L (s,
where I' is the Gamma function, then there is the following conjecture:

The function EE(S) is holomorphic in the entire s-plane and satisfies

(1.4.3) gE(s) = W.EE(Z—S)
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with w = *1.

The sign of w has further significance which will emerge later.

The functional equation (1.4.3) has been proved, for example, in the
following cases: when E has complex multiplication (then QE(S) is a
Hecke L-series with Grossencharacter: see Weil [26 ],Deuring [ 6 ]); and
when E 1s a modular curve. In this latter case, QE(S) is the Mellin
transform of a modular form (c.f. Shimura [18 ]). Recall, for comparison,
that the functional equation for the Riemann zeta-function has a proof
which relies on the fact that its Mellin transform is the theta function
eZTrinzz

8(z) = I which is a modular form for the group generated by

z > z+2 and z > -1/z.

§1.5 Connections

The conjecture referred to in the Introduction is thatAEXEEX elliptic
curve defined over Q is in fact a modular curve. More precisely:
Conjecture Let E be an elliptic curve defined over Q, and CE(S) =
chn_s its zeta function. Then the function f(z) = Xc e21Tinz , for z in
the upper half-plane, is a cusp form of weight 2 for T'y(N) which is an
eigenform for all the Hecke operators Tp for p 1 N, and satisfies
f]W = -wf where w is the sign in the functional equation (1.4.3).
Moreover, there is a rational map @: Xo(N) >~ E , defined over Q, such
that wo@ is a multiple of the differential form f(z)dz on Xo(N).

(From [ 21] p.197).

(Here N is the conductor of E, and w is the standard differential on E:

dx ).

-
2y + ax + a,

In fact, the cusp forms arising from elliptic curves in this way should

if E has equation (l1.4.1) then w =

be precisely the newforms of §1.3. In particular, the number of newforms
for To(N) which are eigenforms of the Hecke algebra with rational
eigenvalues should be equal to the number of isogeny classes of elliptic

curves of conductor N defined over Q. On the one hand, Tingley [ 23]
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computed the dimensions of SN for N < 330 (and indeed, more than just the
dimension); on the other hand, search programs for elliptic curves over
Q with small conductor have been carried out. Agreement was found
between the number of newforms for Iy (N) with rational eigenvalues, and
the number of isogeny classes of elliptic curves over Q with conductor

N: see ['2], introduction to Table 1.

The method Tingley used in [23] to calculate SN for small values of
N can be summarized as follows: by means of the duality between homology
and cohomology on the Riemann surface XN(C), namely

< Y,w > -> Iw

1 Y .
where Yy € HI(XN(C)’C) and w € H (XN(C),C), there is an isomorphism
between H1 and Hl; one can calculate HI(XN(C)’C) by means of modular
symbols (this is explained in more detail in 84.1); one can define a
Hecke action on homology itself which respects this isomorphism; this
action can be computed explicitly in terms of modular symbols, leading
to the splitting of the space into one-dimensional eigenspaces. To a
rational one-dimensional eigenspace-(that is, one with all eigenvalues
rational), there then corresponds a cusp form of weight 2, whose
coefficients are given in terms of the Hecke eigenvalues.

However one can, and Tingley did, go further thén this: the algebraic
curve Xo(N) may be embedded in its Jacobean variety Jo(N), and the one-
dimensional rational eigenspaces correspond to elliptic curves defined
over Q which are factors of Jo(N); modular symbols give explicit cycles
on Xo(N), and by computing sufficiently many Hecke eigenvalues one may
compute the corresponding forms, and hence their periods, to any
desired degree of accuracy. Lastly, given the (approximate) periods
of the elliptic curve, one can calculate an equation for the curve,
with approximate coefficients. Tingley did this for each of the rational
newforms he found, and came up with equations whose coefficients were
very nearly integers; and in each case the corresponding equation with
exact integral coefficients turned out to be a minimal equation of a curve

with the



correct conductor (namely the level N of the newform Y In some cases,

curves with certain conductors were found for the first time in this way.

§1.6 Complex Quadratic Fields

How much of the theory, conjecture, and computation described in
§81.1-1.5 can be generalized to a complex quadratic field in place of
Q? This is the subject of the rest of this thesis. The most straight-
forward area to generalize is that of the elliptic curves; this will
be done now.

Let K be a complex quadratic field with ring of integers OK’ and
let E be an elliptic curve given by (1.4.1) with coefficients a; in OK'
for each prime ideal p of 0K we can define a local L-series L(Ep,u)
just as in §8l.4, where the reduced curve Ep is now defined over
OK/p or GF(Np). The global zeta function is thus

t(s) = TLE N®™)

with the product taken over all primes of OK' The definition of the
conductor as an ideal f of OK is also carried out just as before. The
conjectured functional equation now has the form

EE(S) I+ EE(Z—S)
where now EE(S) = |DK|S(Nf)%S(ZW)_ZS(T(S))ZgE(s).
(Here DK is the absolute discriminant of K.) (See [161 ).

Note that we can expand ;E(s) into a sum, just as in the rational case:

CE(S) a idegls a c(@N@™
where each coefficient c(a) ¢ Z, and for primes p,

c(p) = 1-M+ N(p),
the 'Trace of Frobenius' at p,where M is the number of points on Ep,
including the point at infinity.

The two-dimensional hyperbolic geometry of the upper half-plane H =

SL(2,R)/SO(2,R) will be replaced by the three-dimensional hyperbolic

geometry of 'upper half-space' H3 = SL(2,C)/SU(2), on which SL(2,OK)
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acts discontinuously. This will be discussed in detail in the following
Chapter.

As 'cusp forms of weight 2' for SL(2,0K) and its subgroups we intro-
duce certain functions on H3 which will correspond to invariant diff-
erentials (I-forms) on the three-dimensional quotient space. These
will have Fourier expansions of a slightly more complicated form, but
we will be able to define a Hecke action which will play the same réle
as in the rational theory. The notion of 'newform' will generalize, as
will the connection between homology and cohomology: all this will be
the subject of Chapter 3.

Explicit calculation of spaces of cusp forms is then possible by
calculating the relevant homology and its Hecke action by means of
suitably generalized modular symbols. Here we do not have the
conjugation involution mentioned in §1.3, but instead we have an
involution induced by the action of [8 ?] , Wwhere € generates the unit
group O; of OK’ which normalizes I'¢(a) for any ideal a of OK. This
will play a similar, but not identical, rdle to conjugation in the
rational theory. .This is the subject of Chapter 4, where detailed
algorithms will be given in the cases of the five Euclidean fields
(where both the geometry and the algebra are simpler than in the general
case), with remarks as to how they might be extended to the other
fields with unique factorization as well as to the fields with class
number greater than one.

In Chapter 5 we describe in detail the actual computations which
have been carried out, and provide tables of the results, with some
comments on them: in particular, these tables provide some evidence
of the truth of a conjecture similar to the Weil conjecture above for
elliptic curves over Q.

Lastly, in Chapter 6, we show how a great deal of the theory in

Atkin-Lehner [ 3 ] generalizes fairly easily, with modifications
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according to the local arithmetic, to apply to congruence subgroups of
SL(2,0,) on the one hand, and the Fourier expansions of cusp forms of
weight 2 for such subgroups on the other. In particular, we prove some

results suggested by the patterns in the tables of Chapter 5.
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CHAPTER 2

GL(2,C) and Hyperbolic Upper Half-space

In this Chaptexr I will define the three—dimensional hyperbolic space,
which will replace the upper half-plane as the space on which modular
forms for complex quadratic fields are defined, derive the action of
GL(2,C) on it, and give some of its geometrical properties. This
geometry will play an important part in Chapter 4, where it will be
used in the proof of the algorithm for computing spaces of cusp forms
by means of homology.

The main references here are Beardon's article [ 4 ] and Swan [20].

§2.1 Definition of H, and the action of GL(2,C)

Recall that every matrix in SL(2,R) can be written in the form
1

-
ab y? vy *x|| cos® sinB| _ _-i|y x
Lol 1) [c d] [ -3 ||-sin® cosB| Y o r(0)
‘ 0 vy
where r(8) = [_:izg iigg]. Here x,y, and 6 are given by the formulae
. ai + b - :
(2.1.2) X + 1y = C—i_—"'__d’ 6 = arg(c1 * d).

More generally, any matrix in GL+(2,R) may be written as
ab & ft 0 y X
i B - kDb o
with x,y and 6 again given by (2.1.2). Thus we have a decomposition
+
GL (2,R) = ZBK where Z {tI : t e R¥},

B = {{y X} 'y >0, x,y € R},

01
K = S0(2,R).
So we can identify PGL+(2,R) = PSL(2,R) = BK. Also since the subgroup B
can be mapped bijectively to the upper half-plane H via [g T] > x+yi,
(

we can express H as PSL(2,R)/K, where K = PSO(2,R). Explicitly, we

have a map T % PSL(2,R) =+ . H

F-b] > al+h

(2l o) c d ci + d
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and the inverse image of i ¢ H is K = PSO(2,R). We can write (2.1.4)
ab abl,. : .
as > (i) where on the right we have used the action
c d C d
defined in §1.1; it is then clear that, under the identification
. * 2 . .
B <= H, the action of PGL (2,R) defined in §l.1 is none other than
the coset action on the coset space PGL+(2,R)/K.

Now there is a decomposition of GL(2,C) similar to (2.1.3): every

element of GL(2,C) may be written as

ab o 0|t z u v
s LY - BY6Y
with o 52 0, t ¢ R+, z ¢ C, and lu‘z + |v|2 = 1; here z and t are given

by the formulae

(2.1.6) z = (ac + bd)(|c|? + |d12)_1;

lad - be|(|e|? + |a|D)7.

rt
1

So we can write GL(2,C) = ZBK where now Z = {alI : o e C*};

B={[ST]:teR,t>O,zeC};

K = su(2,c).

We may identify PSL(2,C) = PGL(2,C) = BK and hence B = PSL(2,C)/K, where

K = PSU(2,C).
Definition Upper Half-space is defined as

(2.1.7) H3 := {(z,t) : ze C, t € R, t > 0}.

Clearly the map {t z] + (z,t) is a bijection from B to H so we can

01 33

identify H, = PSL(2,C)/PSU(2). Now we can extract an action of PSL(2,C)

3

on H3 from the natural coset action on B; direct calculation shows that

this is given by the formulae

[: Z] 1 (zZ,t) * (z',t") where
(2.1.8)

. = (az+b) (cz+d) + (at) (ct) . O [ad—bc[t

lez+d|2  +  |et]? lez+d|? + |ct]|?
Denote the point (0,1) in H3 by j. It is a remarkable fact that if we

identify the point (z,t) € H, with the quaternion h = z + tj we can

3
express formulae (2.1.8) succinctly as
(a b ah + b
(2.].9) LC d] H h > Eh—+&’
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where on the right-hand side we have quaternion division. In this
notation we can express the projection

PSL(2,C) - PSL(2,C)/K =B = H
(2.1.10) N i n N aj + b
lc d cj +d

3

(compare (2.1.4)); the inverse image of j is just PSU(2).

§2.2 The Gecmetry of H

3

As a matter of notation and convention, we will identify C with

R? x {0} in R®, and thus H, with {(x,y,t) e R3: t > 0}; denote the

3
one-point compactifications of C and R3 by C_ and Ri respectively;
identify i ¢ C_ with = ¢ Rs; and identify C_ with the boundary of H3
in Ri. As coordinates for H3 we will use either (z,t) or (x,y,t), so
that z = x + iy, whichever is more convenient. The point at infinity
will sometimes be referred to as je.

An invariant metric for the action of GL(2,C) on H, is given by

3
((dx)? + (dy)? + (dt)?)/t? . The geometry is hyperbolic; geodesic
lines are half-lines and semicircles perpendicular to the 'floor' C.s
geodesic surfaces are half-planes and hemispheres perpendicular to

the floor.

The action defined by (2.1.8) obviously makes sense when t = 0: hence
we get an action of GL(2,C) on the floor C.» which is identical to the
usual action of GL(2,C) on Coo by linear fractional transformations.
Recall that a matrix o = [i 3] in SL(2,C) fixes one point of Coo if
and only if a+d = *2 (the point being ® in the case c=0),and otherwise
two points. In the latter case, the fixed point set of a in H3 is
either the vertical semicircle joining the two fixed points, if they are
both on the floor, or the vertical half-line joining the fixed point on
the floor to j.

As with the upper half-plane, we extend H, by including j~ and the

3

points equivalent to it under the action of GL(2,C), namely the points
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on the floor C, to form H¥ := H_ u C u {jx}.

3 3
The topology of H3 is that induced by the invariant metric. This
is in fact identical to the Euclidean topology of H3 as a subset of R¥:
c.f. Beardon [ 4]. We extend this topology to H% as follows: a basis

3

of open neighbourhoods for a point o in C is the set of all S u &4,»&2& Sis an
sphere whose boundar3 " i tangent to C at 0; a basis of open
neighbourhoods at j* is the collection of sets {(z,t) : t > tgo} v {jn} for

all to > 0. The action of GL(2,C) on H, is tranmsitive: for the point

3
j is carried to (z,t) by the matrix 8 7] ; the stabilizer of j is
the set of matrices of the form [;E.g. with u,v € C and |u|2 + IV]2 z 0,

since if j = %%—E—%-(in the quaternion notation) then aj + b = j(cj + d)
= -c + dj, and hence a = d and b = -c.

§2.3 Discrete Subgroups and Fundamental Domains

As in the two-dimensional case, we say that a subgroup G of SL(2,C)

acts discontinuously on H, if every compact subset of H_ meets only a

3 3

finite number of its images under elements of G. As before, it is true

that G acts discontinuously if and only if it is discrete (in the matrix

topology): see Beardon (op.cit.) Theorem 4.2, For such a subgroup G,
we define a fundamental domain or region for G to be a subset D of H3 with
the properties
(1) D is open in H3;
(i1) Each orbit of G in H3 meets D at most once, and meets the closure
D of D at least once.
From (i) it follows that H, = u_ gD , and that if g € G ~ {1} then

3 geG
gD n D = ¢.

There is a general procedure for constructing fundamental domains, as

follows. Select any point Py in H, not fixed by any element of G ~ {1};

3

then the Dirichlet region D with centre P, is defined by

D := {P ¢ H3 : d(P,Py) < d(P,gPy) Vg € G~ {1}}
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where d(-,-) denotes the hyperbolic distance. Such regions have the
following properties (c.f. Beardon op.cit.):

(1) D is a fundamental domain for G in H3;

(ii) D is convex;

[Proof: let P;,P, be distinct points in H3 and define

S(P1,P2) := {P e H, : d(P,P;) = d(P,P,)}

3
which is a hyperbolic plane such that P; and P, are inverse points with
respect to the Euclidean sphere it determines; its complement in H3 is
the disjoint union of two convex half-spaces

H(P13Pp) := {P ¢ Hy ¢+ d(P,Py) < d(P,P,)}

and H(P,,P;). Then D = H(Py,gPo), an intersection of convex

i
geGN{1}
regions. ]

(iii) D is locally finite: that is, each compact subset of H_, meets only

3

finitely many images under G of the closure D;
(iv) The boundary of D is a countable number of geodesic line segments
and polygons: a 'hyperbolic polyhedron';

(v) The map 6 : G\D ~ G\H3, induced by the inclusion D + H3, is a
homeomorphism;

(vi) The faces of the polyhedron D are identified in pairs by certain
elements of G: these elements generate G.

It follows from (v) that G\D is topologically independent of the
choice of point Py used to define D.

The groups G we will be interested in are subgroups of finite index
in PSL(2,0 ) where 0K is the ring of integers in the complex quadratic
field K. In the next section we will give, as examples of the above
situation, and for use in Chapter 4, fundamental regions for PSL(2,0K)

for several fields K. These will all be Dirichlet regions as defined

above.
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§2.4  Fundamental regions for SL(2,0,)

Let K = Q(/-m), where m is a positive square-free integer, and let
0K be its ring of integers. Fix an integral basis {1,a} for K as
follows: if m = 1,2 (mod 4) then o = v-m; if m = 3 (mod 4) then
a = 3(1 + V-m). In the cases m = 1,2 and 3 we will write "i”, e,

n.n

and "p" for "

o' respectively.
We fix the following elements ) of PSL(2,0K):
e O LR R )
So the subgroup generated by S and T is the modular group PSL(2,Z).
These names will apply to all fields; other elements will be named for
the particular cases as they are needed.

In [ 20], Swan finds fundamental regions for PSL(2,OK) for various
complex quadratic fields K, and uses these to determine a presentation,
in terms of generators and relatiomns, for PSL(Z,OK). Several of these
fundamental regions were given by Bianchi [5 ] in the last century;
however, Bianchi worked with the larger groups PGL(Z,OK); especially
in the case when the class number of K is greater than one, there are
reasons for working with a larger group, under the action of which every
cusp is equivalent to j«.

We now summarize the results for the five Euclidean fields (m = 1,2,3,
7 and 11). For these we can 'translate' any point (z,t) by suitable
powers of T and U, which take (z,t) to (z+l,t) and (z+o,t) respectively,
until |z| < 1 : this is precisely bécause K is Euclidean. In fact, using

S as well as T and U we can bring any point within the region

F := {(z,t) : z € Fy, |z|2 +t2 > 1}
where Fo := {zeC: |z| < Iz - zg| for any zp € OK}.
(So Fy is a rectangle when m = 1,2 (mod 4) and a hexagon when m = 3
(mod 4)). Indeed, here is an algorithm for doing so:

[1] Apply suitable powers of T and U until z € Fy;

(*)

Here and throughout we will write elements of PGL and PSL as 2X2 matrices.
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[2] If outside the unit sphere (i.e. if |z|® + t® > 1) then stop; else
[3] Apply S and.go to [11].
The fact that this algorithm will stop follows from the observation

1
, SO

that S multiplies the last coordinate of (z,t) by (Iz]2 + t2)_
that if (z,t) is inside the unit sphere then applying S 'raises' the point,
i.e. increases its last coordinate; and the following lemma.

Lemma For a fixed (z,t) there are only finitely many t' > t such that
(z,t) is equivalent under PSL(Z,OK) to (z',t') for some z'.

Proof: For fixed (z,t), and as c,d range over OK’ there are only finitely

many values of |cz + d|? + |c|?t? in the interval (0,1).

Case m = 1  Here PSL(2,Z[i]) is generated by S,T,U and one further
01 -i0 "
element R = i ol - Then RS = 0il? which sends (z,t) -~ (-z,t). A

fundamental region is obtained by cutting F in half:
D = {(x+iy,t) : =} <x<1i,0<y<}, x2+y2+1t?>1}L
Also, we have
PSL(2,2[i]1) = <S,T,U,R | TU = UT, $%=R?=(RS)?=(URS)?=(TS)*=(UR)>=1> .

Case m = 2 1In this case F is itself a fundamental region for PSL(2,Z[6])

and no further generators are required:

-1
PSL(2,2[61) = <S,T,U | TU=UT, S*=(TS)3=(SU sU)?=1 >.
(
Case m = 3 Here we have an extra generator R = [22 8} , and L := RS =
(
lg gz] sends (z,t) to (p?z,t). A fundamental region is obtained by

cutting F in three:

D = {(x+ yw,t) : 0 <x,y <4, |x+yu|®+ t? > 1},

where w = p2 = 3(-1 + ¥-3). A presentation for PSL(2,Z[p]) is

1

PSL(2,2[p]) TLu=LTL 1o = (18) *= (uT 'sL) 3=15.

<s,T,U,L | TU=UT, §2=L3=L~
Case m = 7 Here F is itself a fundamental region for PSL(2,Z[a]) and
there are no extra generators:

PSL(2,2[al) = <S,T,U | TU=UT, 52=(TS) *=(STU 'su)2 = 1 >.

Case m = 11 Again, F is itself a fundamental region and there are no
extra generators:

PSL(2,z[al) = <S,T,U TU=UT, 52=(T8) *=(STU '8U) 3=1 >.
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§2.5 Congruence subgroups of SL(2,0,)

We retain the notation of the previous section. Let

A(K) 1= SL(2,0K).

Since in any particular context the field K will be fixed, we can usually
(K)

omit the superscript and write A for A" 7.

For an ideal a of 0K write N(a) for the ideal norm:

N(a) := [OK:a] = Card(OK/a).
Define w(a) = Card((OK/a)x),
the order of the multiplicative group modulo a. By analogy with the

Euler ¢ function, we have the formula

=1
o = N@ F0-NE)

where the product is over all prime ideals p dividing a.

We define the principal congruence subgroup of A of level a as

ab
c d

A(a) := {{ } e A: a-1, b, c, d-1 € a};
that is, A(a) is the set of matrices in A 'congruent to the identity
modulo a'.

From now on, in this section, suppose that K has class number one,
so that OK is a principal ideal domain with unique factorizationm. Then
the following sequence is exact: _
(2.5.1) {I} — A(a) — A > sL(2,0,/a) — {1},
where T is induced by the natural projection 0K - OK/a. The only part
of this claim which is not obvious is the surjectivity of m: since OK
is a principal ideal domain the proofs given by Shimura ([17 ] Lemma I.38,
p.-20) or Ogg ([14], Proposition 13, Chapter IV) carry over, as indeed do
the proofs of all the following formulae.

The index of A(a) in A is given by

[A:A(@)] = N(a) oF (1= N(p) 2).
We also define

(a b

Aola) == {[c d] e A:c e al,

a subgroup of A which contains A(a) normally. The quotient group is



isomorphic to

cd

which clearly has order N(a)p(a); so we have

{{a b] :a,b,c,d € OK/a, ad = 1 (mod a)}

. - - 2 _ =1
[Ag(a):A(a)] = w(a)N(a) = N(a) pﬁia (1 = N(p) ")

and hence Azt ()] = NG@) (1 + N .
The latter formula remains valid if we replace A and Ap(a) by the
'projectivizations' obtained by factoring out the scalar matrices in

each to form A and Ag(a) respectively; this is because every scalar

matrix in A obviously lies in Ag(a) for every ideal a of OF'
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CHAPTER 3

Cusp Forms of Weight 2 for Complex Quadratic Fields

In this Chapter I will discuss harmonic functions on hyperbolic three-
space H3 and define cusp forms of weight 2 for subgroups of SL(Z,OK) of
finite index. Here K is a complex quadratic field and OK
is its ring of integers. The harmonicity condition is the natural
counterpart to the analyticity condition required of ordinary modular
forms; the invariance condition for arfunction to be a 'form of weight
2" comes from the requirement that it should correspond to an invariant
differential; the cuspidal condition again comes from a consideration
of suitable Fourier expansions. I will also discuss the definition
of Hecke operators on such functions , and show how they act on the
Fourier expansions; define oldforms and newforms for A,(a) where a is
an ideal of OK; and show that one can calculate cusp forms of weight 2
by means of homology.

The theory developed in the first three sections is taken mainly
from Weil's book [p4 ]; however, Weil's approach is more general, in that
he defines automorphic forms for a general global field, which are
functions on GL(2) of the adéle group of the field. When the ground
field is Q, the geﬁeral theory gives, as a special case, ordinary
modular forms on the upper half-plane, from the single real embedding
of GL(2,Q) into GL(2,R); similarly, in the case of a complex quadratic
field which has a single pair of complex conjugate embeddings of GL(2,K)
into GL(2,C), the general theory gives the automorphic forms on upper
half-space which we describe here with no reference to adéles.

The results quoted in Section 3 are proved by Miyake in-[13 ], which
also uses the mofe general adélic approach.

The relation between homology and cusp forms, discussed in Section 4,
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and the modular symbols defined there, have already been discussed and used

by Kurcanov in [g].

§3.1 Harmonicity

Recall that we can express the upper half-plane as H= GL(2,R)/Z.0(2,R)

where Z is the group of scalar matrices. A complete set of coset

01
Write m for the projection GL(2,R) = H; so the action of GL(2,R) on

representatives is given by the subgroup B = {[y X] :y >0, x e R}.

B =H is given by g: b » m(gb). The space H has the structure of a
Riemannian symmetric space, with ds? = ((dx)? + (dy)2)/y2. A basis

for the left-invariant differential forms on H is given by
dz

dz
@B = L EE S
where z = x + 1y. It is convenient to consider, as well as a differential
form on H, its pullback to G = GL(2,R). For i = 1,2 let W, be the
*
differential form on G which coincides with T Bi at the identity. A

brief calculation shows that right translations by elements of Z.0(2)
operate on the W, by means of a 2-dimensional representation M of Z.0(2)
which is trivial on Z: if @ = [31] then this representation is given
2

by w + M(kz) lw where ¥ € 0(2), ¢ ¢ Z, and M is defined as follows:
M is trivial on Z;
Wf [ cose sing)\ | (e*® 0.} . /f-10)\_ (o1

\ |~-sin6 cosb 0 e °t ’ \L 01}/ 10

So a differential form on G is the inverse image of one on H if and

only if it can be written as @.w, + ©.w., where ® = (p,,p,) is a
1 22 1°72

1
vector-valued function on G satisfying ®(gkz) = ®(g)M(kr) for all g e G,
K € 0(2), and ¢ ¢ Z.

In particular,
(3.1, 0 @r®) = ¢, @™’ and w1<g.['g ) -0,
In view of the second of these relations, not much information is lost

by ignoring the 'antiholomorphic' component 0, in the classical

theory, one just considers holomorphic differentials f(z)dz instead
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of the more general fl(z)dz + fz(z)dz; this is why in Chapter | we

s 3 + . i ..
considered the action of GL (2,R), the group of matrices with positive
determinant, instead of GL(2,R). No such simplification is possible

in the complex case, as will be seen shortly.

Recall that on a Riemannian manifold V of dimension m there is a linear
map from r-forms to (m-r)-forms called the adjoint or * operator. For
a definition, and proofs of the following properties, c.f. de Rham [15].

If o and B are r-forms then

(1) #xq = (-nTED
(i1) a A *B = B A *q;
(ii1) o A *q = £ dx1 A dx2 A oo A dxm where f > 0, and f is zero at

exactly the points of V where o is zero;
(iv) (a,B) := IV o A *B is a scalar product.

Let d be the standard differentiation operator from r-forms to (r+l)-
forms; then its transpose § with respect to the above inner product is
an operator of degree -1 (in fact § = (—l)r*_ld * ). The * operator is
its own transpose: (*0,*B) = (a,B). Now let A = d§ + &d; this
preserves degrees and is its own transpose; it commutes with d and §; and
Ao = 0 if and only if da = Sa = 0, which is if and only if both o and
*0, are closed (by definition, a differential form B is closed if dBR = 0).

A differential form a is said to be harmonic if Aa = 0; equivalently,

both o and *a must be closed.

For a I-form w = fl(z)B1 + fz(z)B2 on the upper half-plane, we have

(0 =”i(fl(z)82 - fé(z)Bl). This is closed if and only if le] - f282

is closed, since Bl =({-8 so w and *w are both closed if and only if -«

2;
both fIB1 and f282 are closed; and this is if and only if both fl(z)§§

and fz(z)—é- are holomorphic differentials in the upper half-plane.

Note that from (3.1.1) we have f](E) = fz(z).
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Next we will apply these ideas to determine the shape of harmonic

differential forms on upper half-space H3.

From (2.1.5) - (2.1.7) we have H, = GL(2,C)/ZK where K is now SU(2).

3

Again a complete set of coset representatives is given by the subgroup

B = {{S T] :zeC, t eR t >0} Write 7 for the projection from
G = GL(2,C) to H So H, also has the structure of a Riemannian

3° 3
symmetric space, with (ds)? = (dzdz + (dt)?)/t?. The space of left-

invariant differential forms is now three-dimensional, with basis

B it i B G, D R g,
Again, denote the pullback of each Bi to G by w, . The effect of right
translations defined by elements of KZ is now to operate on w = (wo w, wz)t
by a three-dimensional representation. This is clearly trivial on Z
(which acts trivially on H3). We now determine its action on K.

Calculating the Jacobian matrix of the transformation (2.1.8) we find that

_ 1 r?A  -2rsA s2A
v 1 ] —_ — —_— =,
Az = v K] Ceram o] Soolk
T el + [e]22 | %8 - ek %
where r = cz + d, s = ct, and A = ad-bc. In terms of the basis B for

differentials, this becomes

r?A  =2rsA s?A )
' -1 -1 | = s s =
3.1.2) B = Al (|e]? +]s]®) rs|A| (rr-ss)|A| -rs|A|| B
sZA 2rsA A
Now when 1l € SU(2) we have ab = B say, where
.C d c d _; E ? 2
|u|? + |v|? = 1. At the identity in G we have ~z =0 and t = 1.  Sub-
stituting in (3.1.2) gives w' = p(u,v)w where
u? 2uv v?2
p(u,v) = -uv  uu-vv uv
v: =2uv  u?
(
Notice that if we write o ‘E i_] = p(u,v) then p: SU(2) = SL(3,C)
-V u

is the three-dimensional polynomial representation of SU(2).

Hence a differential form on G is the inverse image of one on H3 if

and only if it can be written as Zwiwi where & = (wo,ml,wz)
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satisfies ®(gkz) = ®(g)p(g) for all ge G, kK € SU(2), T ¢ Z. Let fi
be the function induced on B = H3 by 0, > for 1 = 0, 1, 2. and write
F = (fo,fl,fz). As a particular case of the relation F(gk) = F(g)p (k)

let us record the following: 218

e 0 0
[ (e o
(3.1.3) F {(z,t) -i6 = F(z,t) . |0 1 0
\ 0 e ™)) ~2i8
0 0 e
2
Let w = F.8 = .IL, f£f.R. be a I-form on H,. Then w is harmonic if
i=0 171 3
and only if w and *w are closed forms. From the definition of the *
operator one computes
* = _l'_ o 5 . e ;
(3.1.4) (F.R) zlf1 (80 A 82) + 1f0 (81 A 62) + 1f2 \Bl A 82),

(evfe [ 24] p.107).
Definition A function F: H3 - C3 is said to be harmonic if

(i) F.RB is a harmonic differential form;

(ii) F is slowly increasing in the following sense: there exists N > 0

such that

= o(x|Y

([x0 \

(51w )

as x o ,Xx ¢ R , uniformly over compact sets in H3.
Here the modulus signs | ] on the left refer to any norm on C3.

Now suppose that &: G - C3 induces the function F: H3 - C3, that

F is harmonic, and that @ also satisfies the condition

(3.1.5) o ([é ?]-g) = e_2ﬂl(z ) o(g) for all g ¢ GL(2).
Then F satisfies

-2mi(z + 2)
e

F(z,t) = F(0,t).

=2mi(z + z)gi(t).

Writing gi(t) = fi(O,t) we thus have fi(t) = e Then

. . = o =
F.R closed implies that gz(t) = —go(t) and-%t(t 1go(t)) = 27it g](t),

-2
while *#(F.R) closed implies from (3.1.4) that %f(t “g](t)) =

4ﬂit—2(g2(t) - go(t)). Let s = 47t and K(s) = t—zg](t). Then
sk"(s) + K'(s) - sK(s) = 0.
The only solution of this which does not increase exponentially as s = «

is Hankel's function K so we may take g](t) = t2K0(4ﬂt) and

O;
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go(t) = —gz(t) = —%it2K1(4ﬂt), where Hankel's function K, is given by

1

R, (8) = - (K ().
We have proved
Proposition 3.1.6 Let ® : G ~ C3 satisfy (3.1.5) and induce F: H3 - C3
which is harmonic. Then
F(z,t) = ¢ e_ZTTi(z * E.)H(t)

where ¢ 1s a constant and

iz H(D = (HHER (T, R 4T, bR (4e))

§3.2 Fourier Expansions and the action of GL(2,C) on Functions

Let F:H3 -+ C3 be a function which is harmonic, in the sense of the
previous section. We will now define an action of GL(2,C) on such
functions which will generalize Definition (1.3.1). For g € GL(2,C),
we wish to define a function F|g such that F.B 1is an invariant

differential under the action of a discrete subgroup G of GL(2,C) if

and only if F|g =TF for all g € G. Rewrite (3.1.2) in the form

(3.2.1) B' = J(g;(z,t))8B
where if g = {i Z] we set A = ad-bc, r =cz + d, s = ct and then

I r?A  -2rsA s2A
(3.2.2) J(g;(z,t)) = BRGEEEEER rEl_A-I (E:E)M[ —Es_]_A] .

s A 2rsh r°A

Definition(*) Let g = [2 2] € GL(2,C) and F:H3 - C3 be as above. Then
define a new function Flg by
(3.2.3) (Flg)(z,t) = F(g(z,t)) J(g;(z,t)).

(*) This definition is not quite analogous to definition (1.3.1) in the
rational case, since there the definition is designed to make f(z)dz,
and not f(z)dz/y, invariant although dz/y is the invariant measure on
the upper half-plane. The course we have adopted seems most natural
here; the formulae in this Chapter would need modification if the
alternative were used.
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Note that (Flg)(z,t).g(z,t) = F(g(z,t))J(g;(z,t)).B(z,t) =
F(g(z,t)).g(g(z,t)) by (3.2.3) and (3.2.1); so that the differential
F.Bg is invariant under g if and only if Flg = Fs

As it will sometimes be convenient in the sequel to pass between
functionsF on Hy and functions @ on GL(2,¢), we give the appropriate
formulae here. Given @ : GL(2,0C) a-C3 we let F be the restriction
of @ to B, which as usual we identify with H3. On the other hand,
given F : H3 5 G we define for g ¢ GL(2,C),

© (g) := F(g(i))i(g;:i)

where j, as before, denotes the point (0,1) in H3. Note that in fact

Ag) = (Flg) (i), from (3.2.3), and that for ge GL(2,C), k e SU(2) and

L €Z we have @ (gkr) F(gkz(3))I(gkzs i)

F(g(3))JI(g33)I(kzg53)

o (g) p(Kk)

as desired, since when the Jacobian function J is restricted to KZ and
evaluated at j it coincides with the representation o (by definition of
p).  Here we have used the fact that J satisfies the 'chain rule' or

cocycle identity
J(g,8,3(2,8)) = J(g];gz(z,t))J(gz;(z,t)).

It will be useful later to have an explicit formula for the special

case of (3.2.3) when g = [g z

(EEEE ’lglt)' In (3.2.2) we thus have r=d, s=0, A = ad, and so
abl, L= ad ad

Now also from (3.1.3) we can write

}. From (2.1.8) we have [8 3] (z,t) =

= diag(ele,l,e_le) where g = arg(a/d).

az+b

F( T ° t)diag(e_le,l,ele)

a az+b a
i SR
so that the diagmnal matrices cancel out, giving us

a b az+b a
{O d])(zst) = F(-d_, Et)-

Note that on the right-hand side of (3.2.4) the second argument is

(3.2.4)  «(F

not necessarily positive real; it is frequently the case that simpler

formulae are obtained by writing them this way: we can convert from one
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form to the other by means of the equation

(3.2.5) Fz,tel®) = P(z,0)diagel®, 1, e
which follows from (3.1.3) since
(teie z e%ie 0 z t e%.le 0
0o 1 i o et®flo 1jlo 7

This difficulty was avoided in the real case by restricting to matrices
of GL(2,R) with positive determinant: in the present case it is more
convenient just to allow arbitrary non-zero complex numbers as the second
argument of functions. Indeed, there is a case for replacing the upper

half-space H_, with {(z,w) ¢ C2 : w= 0}; then one could identify (z,w)

3
with the quaternion z + wj and gain much simplification in formulae
(compare (2.1.8) with (2.1.9)). There might also then be a possibility

of a complex structure. However this line will not be pursued here.

For 'translation' matrices [é ?] which send (z,t) to (z+b,t),

Ib

formula (3.2.4) simplifies even further to (F | [O .

]) (z,t) = F(z+b,t)
since the Jacobian matrix is then trivial.

Now let K be a complex quadratic field, and OK its ring of integers.
Let T be a discrete subgroup of GL(2,K) containing all the translations
[é ?] for o € OK: for example I could be the congruence subgroup Ag (3)
defined in §2.5. Then if our harmonic function F is invariant under T,
we have in particular
(3.2.6) F(z +0, t ) = F(z,t)
for all o € OK. Fix t and consider F as a function of z alone: it then
follows that F has a Fourier expansion with respect to the characters of
¢t (the additive group) which are trivial on OK. What do these
characters look like? If { is any non-trivial character of C+, then
for any fixed w € C the function z ~ Y(wz) is also a character, and in
fact all characters of C+ have this form (c.f. Tate's thesis [22] 8§2.2),

so that C may be identified with its character group. To fix this

identification we will use a particular character Y, namely



33

-2mi(z + z)
e o

(3x2.7) ¥(z)
So F has an expansion of the form
F(z,t) = co(t) + g c(o,t)P(oz).
As we know that F(z+B,t) = F(z,t) for all B ¢ OK,
L ca,t)P(az) = I c(a,t)P(a(z+B)) = I c(a,t)P(aB)P(az)
and hence for all o, and all 8 ¢ O,

c(a,t) = c(a,t)P(aB).

This means that c(o,t) = 0 unless o is such that Y(aB) 1 for all B « OK'

But Y(aB) = exp(-2miTr(aB)) = 1 if and only if Tr(oB) = Z, so B = Y(aR)

n

is the trivial map if and only if Tr(aB) ¢ Z for all B ¢ OK’ which is if
and only if o belongs to the 'inverse different' 6—1 of K. So the
Fourier expansion takes the form

(3:2+8) F(z,t) = co(t) + I e c(a,t)v(oz).
aed
The different § is an ideal of OK: in fact it is the principal ideal

(/D)OK where D is the discriminant of K. Writing n = /D and substituting
o for no gives

(3.2.9) F(z,t) = ¢ (t) + agch(n_la,t)w(n_laz).

The coefficient functions co(t) and c(a,t) are given by the usual formulae:

cO(t) = [ F(z,t)dz;
(3.2.10) OK\C
c(o,t) = f Y(-ow)F(w,t)dw.

OK\C
Writing the latter as

c(o,t) = [ Y(-ow)F ( {é ‘1’] (0,¢) )dw = [ ¥(-ow) @([(1) ‘1’] [g ?D dw,

where @ is the associated function on GL(2), leads us to define more

generally for g ¢ GL(2):

(1
(3.2.11) c(asg) = [ W(-ow) @ (1w g\ dw.
\(0 1)%)
og\C
Since F was assumed to be harmonic, the same is true of c(ojg), as a

function of g for fixed a. From (3.2.11) we have

( (
c@; M e = [ wewn o ({1 z {1 W g\ e
01 01jl0 1)°)



= - oc(w—z))@({cl) ]

= Y(az)c(asg).
We cannot apply Proposition 3.1.6 directly to this since we have the

character Y(oz) instead of Y(z). But if we define c'(ajg) :=
- 1 3

c(a;[a ?Jg) then c¢' satisfies

0
c‘(oc;{é T]g) = P(z)c'(o38).

Hence by Proposition 3.1.6 there is a constant cl(a) such that

e’ (03 [3 ﬂ) = ¢ (@Y()H(x)
where H(t) is given in (3.1.7). Substituting for c gives
c(a;[g ?]) = c](a)w(uz)Hﬁat) and hence c(o,t) = cl(a)H(at).

Writing c(o) for c](n_%n gives us the following result.

Proposition 3.2.12 Let F : H_ -+ C3 be a harmonic function invariant

3
under all [é ?] for o ¢ OK' Then F has a Fourier expansion of the form
-1 -
(3.2.13) Flzg). = e.lt) + T el@ i aeiim s
0 aEOK
where: co(t) is given by (3.2.10);

c(0) is a coefficient depending on o;
H(t) is given by (3.1.7)
and V is the standard character (3.2.7).

Fourier expansions of the form (3.2.13) are special in two ways. First

e,

of all, we assumed that F was invariant under [é ?J for every a OK:
that is, that the cusp at jo was of 'width 1'. More generally, if the
set of o such that F is invariant under [é ?] form the ideal h of OK’

we must replace the inverse different 6_1 by the OK-module dual to h:

namely. {0 ¢ K ; Tr(oB) ¢ Z for all B ¢ h} which is just h_lé_l. If

we assume that 0K is a principal ideal domain, then h is principal,

generated by an element A say; and the Fourier series for F takes the form

(3.2.14) Flz,t) = e ft) elayBix ‘T' at) VO taz)
0 60 I

where now

(3.2.15) egt) = [ FO\z,t) dz.
OK\c

Also, we may consider Fourier expansions at other cusps. All the
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'K-rational' cusps (s,0) for s : K are equivalent to je under the action
of SL(Z,CQ ,provided that K has class number one. More generally, the
number of orbits of SL(2,OK) acting on Pl(K) = K y {jo} is equal to the
class number of K. If 0 ¢ SL(2,OK) sends jo to the cusp s, and F is
invariant under a subgroup I', then FIO is invariant under all matrices
of the form p = O_]YG for v € Fs’ where

Fs ={yel :vs=s},

since ((F|o)|p) (@) (Flop) (®) = (F|yo)(®)
= F(yo(P))JI(yo;P)
= F(y(o(P)))JI(y;0(P))JI(o3P) (cocycle identity)

= (F|y) (c(P))J(o3P)

= F(o(P))J(o;P) (since Yy € T)

= (Flo)(®)
for P = (z,t) € H . But G—ITSO fixes jo and so consists of matrices
of the form [é ?] : if the set of o such that F|U is invariant under
Lé ?] is the ideal h = (A), then as before F[o has a Fourier expansion
of the form (4.2.14). We now define this to be the Fourier‘expansion
of F at the éusp S Its 'zeroth' coefficient is given by
(3.2.16) OK{C(FIo)(xz,t) dt

This leads us to define automorphic forms and cusp forms as follows.

Definition 3.2.17 Let K be a complex guadratic field with class number

one and ring of integers OK; let T be a subgroup of SL(2,0K) of finite

index. Then an automorphic form of weight 2 for T is a function

F : H3 - C3 satisfying

(1) F is harmonic;

(ii) F|y = F for all y e T.

If, in addition, for all O € SL(2,OK) and all t =2 0, F satisfies

0

(iii) Oﬁ\c(FlO)(kz,t) dz
where ()\) is the width of the cusp at 0(j®) as defined above, then F is

called a cusp form of weight 2 for T.
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Notes: (i) In this thesis only forms of weight 2 will be considered,
so from now on the qualification 'of weight 2' will be omitted.

(1i) Cusp forms F for I' correspond to harmonic differentials F.8 on
*
3

(111) Note that in the Fourier expansion (3.2.13) the argument of H is

the quotient space_which are zero at the cusps of T'\H

-1 . .
n ot where n,o0 € 0K and t € R, t > 0, whereas in (3.1.7) we defined
H only for positive real arguments. This abuse of notation is resolved

by (3.2.5) and the remarks following it: we set
HCEe ") = mia i P )
i6

= (-yirfelx (), P ), dirte %k (4m)).

(iv) The only part of the definition which depends on T itself is (ii),
the invariance condition. So if F is an automorphic form or cusp form
for T, and F is also invariant under another group I'', then F is also

a form for T'.
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§3.3 Hecke operators

As with ordinary modular forms, we can extend the action of GL(2,C)
on functions, given by (3.2.3), to the group ring of GL(2,C); Hecke
operators will be defined by particular elements of this group ring.

Before we define them, however, we need to introduce some other operators.

Let € be a unit of 0K and let IE denote the matrix {S ?]. The
U
action of Ie on H3 is to send (z,t) to (ez,t) since |€| = 1 Also,

J(Ig;(Z,t)) = diag(a,l,e_l) and from (3.2.4),

(3.3.1) (F[IE)(z,t) F(ez,et)
= F(ez,t)diag(s,l,e_l).

We can also compute the action of IE on Fourier coefficients: if F

has a Fourier expansion given by (3.2.12) then

(FIIE)(z,t) F(ez,et)

' -1 =1
+ ., v
co(et) GEOE(G)H(.} aet)P by aez)
=] -1 =1
co(et)+ QEOE(Gg )H(ﬁ at)w(q az).
So if F is invariant under I8 we must in fact have

I

(3.3.2) c(a) = c(ae)
for all g ¢ OK.
Denote by S(a) the space of all cusp forms for A,(a) where a is an ideal
2
. e2 0 [g 0
of OK’ and suppose F ¢ S(a). Since [O IJ and 0 =1

equivalent they give the same transformation of H3; but the latter is

] are projectively

in A, (@) for every a; so we must have FIIEZ = F. Then by (3.3.2),
the coefficients of F satisfy

(3.3.3) cla) = c(eza)

for every unit € ¢ 0;. Also note that IE normalizes A, (a) so that

F I8 is invariant under Agy(a) if and oply if F is. So if gy is a
generator of the unit group OZ then IE_:0 induces an involution of S(a)
which we denote by J and call the 'main involution' of S(a). Hence we

can split S(a) up as

(3.3.4) S(a) = S(a) & S (a)
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where J acts as +1 on S+(a) and as -1 on S—(a). Note that by (3.3.2),
for F ¢ S+(a), the Fourier Coefficients c(a) satisfy c(a) = c(gy0), and
so depend only on the ideal (a); whereas for F ¢ S—(a) we have c(g) =
-c(€o0) and this is not so.

Now suppose that K has class number one so that OK is a principal ideal
domain. Let P be a prime ideal of OK generated by an element T. Then

we define the Hecke operator TTT to be the transformation F -+ F TTr , where

(1 o 1 0
(3.3.5) L. - = z [O TT] + lo 1]
o mod T
For a unit € OK we have
S 5 O 81
# o mod w\- €M)
0 1 a e 0)[m O
= [o e] 2 [o w} i {0 1][0 1]’ so that
(3.3.6) TEOTT = JTW .

Hence we cannot in general define an operator Tp for a prime ideal p,
since the definition may depend on the choice of generator for p.
Lemma 3.3.7 If F is in S(a) then so is F|'I:Tr for every prime element T r a.
Proof: Coﬁdition (i) of Definition 3.2.17 is automatically satisfied
by F|L, for every element L of the group ring of GL(2,C), if it is
satisfied by F. As for the cuspidal condifion (iii): this is also
satisfied by FIL, for L in the group ring of GL(2,K), since F itself
vanishes at each K-ratiomal cusp. So in this and similar results, it
suffices to show that F|L is invariant under the group concerned.

In this case, the proof of the fact that F['I‘Tr is invariant under
Ao (@) provided that T y a is almost identical to the proof of the
corresponding fact for I'p (N) in the rational case (c.f. Atkin-Lehner
[3 ] Lemma 6). The modifications are trivial and so the proof will not
be written out here.

Suppose F has a Fourier expansion of the form (3.2.13):
c@EN atl 6 az).

z
¢ (
Then (F]Tﬂ)(z,t) & )} (F(I)T1 B])(z,t) +  (F| lg ?J)(z,t).

B mod T 0w

F(z,t) = co(t) +



Now from (3.2.4),

18 - zt8 ot
(F| o )(z,t) = F(—, =)
and @ |7 IPEn = Fmz, m.
Hence (F|T )(z,t) = o B2 . Ey & v, ut)s
m B mod T m m

Substituting in the Fourier expansion (3.2.13) gives

n

(F|T ) (2, 1) N(me, (@) + cq(mt)

PI Te@EM eDuin ol
Bmod m «

+ I c(a)H(n_laﬂt)w(n_]aﬂz)
a

= C6(t) #.7Y C'(a)H(n—lat)w(n_laz), say,where
a
cy(t) = N(W)co(tﬂ_l) + o (tm), and
*
& c"(a) = N(mec(am) + c(a/m).

(We use the convention that c(a) = 0 wunless o ¢ OK.)
Here we have used the fact that

L oun leg/m =

i N(T)  if T | aj
B8 mod T 1

0 if 7/ a.

From (%) it follows that if F is -a cusp form then so is FITH.
Suppose also that F is an 'eigenform' for TW, so that Fl’f‘TT = XﬂF for
some constant XW. Then c' (o) = Knc(a) for all o. Write a(o) =

N(a)e(a) and a'(a) = N(a)e'(a), so that (*)  becomes

(3.3.8) a'(a) = a(am) + N(ma(a/m).
Then substituting o = 1 gives
(3.3.9) (1) Awa(l) = a(m)

r+l r-1

and for r = 1, a(m ) = a(m) - N(ma(rt ).

Also if m [ a, (3.3.8) gives a(am) = Kﬂ a(a), and forr =2 1,

Bly o A alor®) - N(mMatart V).

(3.3.9) (ii) a(am”
In particular, if F is an eigenform for all the TW, the coefficients of
F may all be computed in terms of the eigenvalues XW. Moreover from

" (3.3.9) it follows by simple induction that

a(Daar’) = a(a)alr’) for m | o



so that the coefficients become multiplicative if we normalize by setting

a(l) = 1. (We can do this because a(l) # 0 for an eigenform: this
fact is not trivial to prove —see the end of this section.)

For each prime T dividing the level @ there is an involution Wos
defined just as in the rational case: let " be the highest power of
T dividing @ and let W be any matrix

T r
L oz Wrw] with determinant T
where @ = (0); then if F is a cusp form for Ao (@), so is F|Wﬁ,
which is independ<nt of the choice of matrix chosen, and (F[Wﬁ)|Wﬁ = F.

We finish this section with a summary of some results concerning
the action of the Hecke operators on the space of cusp forms S(a), for
a an ideal of OK' They are all special cases of results valid for
automorphic forms over an arbitrary global field, which can be found
with proofs in Miyake [13 ], and are straightforward generalizations
of the corresponding facts about cusp forms in the rational case. The
proofs are very similar to those in Atkin-Lehner[ 3] and could have
been written out in full here in the present context of a complex -
quadratic field, but this seemed unnecessary.

Summary of results about Cusp Forms and Hecke Operators

If (Wl) z (FZ) then TﬂlTﬂz = Tanﬂi.

If (1) # (") and T, T, | 2 then wﬂlwTT2 = wﬂ_)wﬁ’.
<~ L

If T | a and m, ! a then TﬂzwTrl = wﬂlTﬂz.

There is an inner nroduct on S(2) such that each.TW (ﬁl Y a) and
1
each WTT (m a) is self-adjoint with respect to it. Hence there 1is
2

a basis of S(a@) consisting of forms which are eigenvectors, or

|

eigenforms, for all the TTT for m * a and all the WTT for m | a, Elements
of such a basis always have their first coefficient a(l) * 0; normalize
them so that a(l) = 1.

( =
X O] € S(a) for any k | ab 1;

If F € S(b) where b | a then F[to 1

denote by SOld(a) the subspace generated by all such F|[g ?] for all
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b | a; then SOId(a) is mapped to itself by all the TTT for T | a and

Wigh of 57%%a)

WTr for m [ a, and we may form the orthogonal complement she
; ; ; new .
with respect to the above inner product. This space S (a) is
spanned by the eigenforms, called newforms, which are not oldforms
(elements of 801d(a)). So Snew(a) has a basis consisting of newforms,
which are eigenforms for all the T for m | a and the W for m | a, and
have first coefficient 1.
. new ;

The algebra generated by all the Tﬂ, restricted to S (a), is
commutative, semisimple, and has rank equal to dim(Snew(a)).

The following result is deeper, and correspondingly harder to prove.
Theorem If F and G are newforms for Ag(a) and A¢(b) respectively, then

either F = G and a = b, or else F and G have different eigenvalues for

infinitely many T with T | ab.
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83.4 Cusp forms, Homology, and Modular Symbols

If T is a discrete subgroup of GL(2,K) then denote by X_ the quotient

T

In general XF is

&
topological space I' \ H3, and by XF its closure T\H3.
not a manifold, because [ may contain elements of finite order; but if

I' contains no such points, then X, is a real analytic Riemannian manifold

r

(c.f. Kurlanov [ 81).

If T does have elements of finite order, let I'' < I' be a normal

subgroup of finite index in I with no such elements. Then XT' is a
manifold, and the finite quotient group I := I'/T' acts on it. We have
a map

™ XF' - XF

induced by the identity on H3, and this induces maps

o Q) -~ HI(XF , Q)

H, X
1

and T : H &, ,Q =~ Hl(i Q).

T ree
® . . * . . 0 0
Lemma 3.4.1 T, 1s surjective and T 1is injective.

Proof: (c.f. T 8] Lemma 1). In the case of homology, the set P1 =

XF ~ XF is finite, and the set P2 = {r(P) : P ¢ XT'

a one—dimensional submanifold of if (c.f. §2.2). It is clear that,

we can find a homologous path lying entirely

is fixed by T} is

given any path in X

i

withinlir ~ (P1 U PZ)' If the path is closed, some multiple of it

will 1ift to a closed path in X., since I is finite.

We have Hl(if, , C) = Q/Qy , where Q is the space of closed ¢

I-forms of compact support on X , and Q¢ is the subspace of forms of

I"
the form dF where F is a function on XT" If QT and Qg denote the

subspaces of Q2 and Qy consisting of forms which are invariant under the
- * T T
action of T, then in (3.4.1) the image of T is clearly QF / Qg.

v .
In the case I' = Aj(a), let Xp(a) = Kurcanov, in [ 8 ], proves

X z
Aq (a)
that the map

s@@ + B &K@ , 0 ,

given by F - F.B 5



; ; ; v .
is an isomorphism. In fact, Kurcanov, and others, work with the

larger group A;(a) i= {[2 3] € GL(2,K) : c € al. In the¢ case where K

has class number one the corresponding projective groups satisfy

[A:(a) : Ap(@)] = 2 since

-10

N = K@ v [01

Hence on the right-hand side of the above isomorphismyone is restricting
to forms invariant under (z,t) - (-z,t); similarly, on the left-hand
side,one is restricting to the subspace S+(a) defined in the previous
section.

Now there is an exact duality

H &, 0 x B&, ,0 ~ ¢

given by (w, v - [ w .
In this pairing the action of GL(2) on differential erms corresponds
to the action on homology induced by the action on the points of H3,

since if o € GL(2,C) and Yy is a path representing a homology cycle, then

JF.B = [(Feq).(Bea) = [(F|la).B
y () Y Y

by definition of F]|a.
In this duality, restricting on the left to forms invariant under T,
that is to QP/QE , corresponds on the right to factoring out by the

kernel of M- So we also have an exact duality between Hl(i- C)

T’
and Hl(ir s C). In the case T = Ay(a), we can use Kur&anov's
isomorphism to yield an isomorphism

s(a) —— B &@ , 0.

In the next chapter I will show how to compute V(a) := HI(X;ZET,Q)
explicitly far any ideal a of 0K when K is one of the five Euclidean
fields. We will be able to compu te explicitly the action of:
the main involution J;

the WTr involutions for m | a;

the TW for any T | a.



It follows from the results of the previous section that we can find a

basis for V(a) with respect to which each of the above operators acts
with a diagonal matrix: this basis will be explicitly represented in
terms of cycles on i}?ET. 01d forms can be recognized, while the
coefficients of newforms can be computed from their Hecke eigenvalues,
as indicated in the previous section.

Modular Symbols Modular symbols are a convenient form of notation

with which to calculate the homology of spaces XP for various subgroups
I It seems appropriate to define them and give their basic properties
here, although we will not use them until the following Chapter. They
are discussed in the rational case by, for example, Manin in [ 10] or
Lang in his book [9 J. Kurtanov has also used them for complex
quadratic fields, in work relating to the Birch - Swinnerton Dyer

conjecture, for which they were originally invented by Birch.
*
g =

H3 UK u {jo} which are equivalent under the action of T: so there

exists Y € T such that y(A) = B. Then any smooth path from A to B in

Let A and B be two points in the extended upper half-space H

- *
H3 projects to a closed path in the quotient space Xp =T \ H3, whose

-homology class in Hl(ir , L) depends only on A and B and not on the
*
3

class by {A’B}F , or simply by {A,B} if the group T is clear from

path chosen (because H, is simply connected). Denote this homology
the context. If we identify homology classes with functionals on the
space of differentials, then we may extend this definition to points
A and B not equivalent under I': denote by {A,B} the real homology
class identified with the functional w — Ii ¢fw , where w is a
differential onliF and ©: H: +'§T is the natural projection.

Modular symbols {A,B} have the following properties, whose proof

is immediate.

(3.4.2) (1)  {A,A} = 0;

(ii) {A,B} + {B,A} = 0;



(iii) {a,B} + {B,Cc} + {C,A} = 0;

(iv) {yA,yB}r = {A,B} if Y € T;

*

3;

(Proof: {A,yA} = {A,B} + {B,yB} + {yB,yA} by (ii) and (iii)

(v) {A,yA}F = {B,YB}P if Y e I, for any A and B in H

{A,B} + {B,yB} + {B,A} by (iv)

I

{B,YyB} by (ii) ).

Il

(vi) {A’YA}T € H1<§ , 2) if y e T.
An elementary geometrical argument similar to the one used in the

proof of Lemma 3.4.1 shows that any element of Hl(i Z) can in fact

1" 3

be written as {A,YA} for some Y ¢ ', and A € P, = K u {j=}.

1

In the next Chapter we will see that in fact the rational homology

can be generated by elements of the form {Y(O),Y(jw)}r for vy € SL(2,0,).



§3.5 Periods of Cusp Forms

2Tinz
ae

(-
Recall that in the rational case, if f(z) = I is a newform

n=1
for To(N) (so that a, = 1 and Tpf = apf for all p 1 N) with all its

1

Fourier coefficients a rational, then in the homology of T'j(N) \ H*
there are two one-dimensional eigenspaces with eigenvalues a , one
with eigenvalue +1 and one with eigenvalue -1 for the conjugation
involution z - -z; and that the periods of the associated form 2mif(z),
integrated around the corresponding cycles, are the periods of an
elliptic curve uniformized by functions on X,(N), with zeta-function
Zann—s, and this curve (conjecturally) has conductor N. For N < 330
the appropriate calculations have been carried out by Tingley, as
described in his thesis [23].

One might hope that in the complex quadratic case the periods of
the differential F.B, where F is a cusp form, might also be of interest
(c.f. Weil [241] and [25], last paragraph). Unfortunately, the symmetry
induced by complex conjugation in the rational case, which led to a
pair of periods being assoéiated to each newform, is not now available;
although there is some symmetry between the spaces S+(a) and S (a),
defined in §3.3, as will be demonstrated in a later Chapter. However,
the Fourier expansions introduced in §3.2 do enable us to compute a
single period of a differential F.B, given sufficiently many of its
coefficients, fairly rapidly and accurately; so we record the formulae
here, and in Chapter 5 will give the approximate periods for some of
the newforms given there in the tables.

First recall from the first section of this Chapter that Hankel's
function KO satisfies the differential equation

tKB(t)_ + K(')(t) = tKO(t) = 0,

which can be written

d oy d
(3.5.1) —tKO(t) = - E(tKo(t)) dt(tK1<t))



since K](t) = —Ké(t)

Suppose that F(z,t) is given by a Fourier expansion (3.2.13) and we
wish to know its integral over some closed cycle vy in X,(a); by the

previous section, we can write this cycle in the form {a,je} where a e K

is equivalent to j« under Ag(a). Choosing a vertical path from (a,0)
T - d dz. .
to jo in H, , the dz and dz components of B = (- —%,-é%, —%) vanish,
gy o0 dt . .
giving [{F.B = IO Fl(a,t}—g where F = (FO’FI’FZ)' Substituting

the Fourier expansion (3.2.13) for F gives

) - =1
(3.5.2) [F.8 = [7 ] c@yGrin E] oy gde
Y £e0
K
-1 o -1
= 3 (c(&)w(n Ea) fo tK (47 |n E[t)dt>
Ee0.
i
c(&) =i
= K (n a)) where
Lo AT VA58
K
(oo}
K = Yql? }' tK_(t)dt
) 0 0
is a constant. But although convergence of the above sum is assured by
the estimate c(§) = O(]£|—a) for some a > 0, in practice it converges
very slowly. This can be remedied as follows.

Let g € Ag(a) be such that g(j») = a. Then the cycle {o,j} =
{g(j»),j»} can be represented by {g(P),P} for any P «¢ H3, by property (v)
of (3.4.2). Since {g(®),P} = {g(P),j=} - {P,jo} it is enough to consider

cycles y of the form {P,jw}. If P = (a,ty) where t, > 0, then (3.5.2)

becomes
| s’ - co
JF.B8 = %%%;2 ) <c<g)|gl 2w<n lag) / " tKO(t)dt>,
Y £e0, 4m|En |t

But from (3.5.1), since Ko(t) and Kl(t) decrease rapidly to 0 as t » oo,

we have -
Ito tKO(t)dt = 'toKl(to)- Hence
“v -1, -1 -1
(3.5.3) {F.B = f:;L%%EQ g€OK<c(£)]£l v(n aB)K, (4m|En |to)> :

Since K](t) becomes very small very quickly ' (faster than e_t) this

sum converges very fast: and the larger the value of t,, the faster it



( . d 1
will converge, If g = LNC d then it is best to take P = (- e’ TEET)

a 1 ; .
where (N) = a, for then Q = g(P) = CEE 5 TEET), so that in calculating

both the integrals, over {Q,j»} and {P,j~},we can take t = \Ncl—l. In
practice one has considerable choice in which matrix g to use: so one

chooses one with |c| as small as possible.



CHAPTER 4

Modular Symbols and the Calculation of Homology

In this Chapter, I will show how to calculate HI(G\H* , Q) where G is
a subgroup of finite index in A = SL(2,OK) and K is one of the five
Euclidean fields Q(/-d) for d = 1,2,3,7, 11. Some remarks will be made
at the end about how to generalize the procedure to the other fields with
class number one (d = 19,43,67 and 163) and the fields with class number
greater than one.

The main features of the algorithm are identical for the five fields,
although there are of course differences in detail. The algorithm is
an extension of the one given by Manin in [10] for subgroups of the
modular group SL(2,Z) which I will describe briefly in §4.1: I will
borrow some of Manin's notation, but present a somewhat simpler version
of the proof. Then, in §4.2, I talk about the algorithm for
the five Euclidean quadratic fields, giving the plan of approach which
will be common to the five fields. The five fields are then dealt
with in turn. The geometry developed in Chapter 2, and in particular
the fundamental regions described there, will play an important part

in this discussion.

§4.1 Review of the Algorithm for subgroups of SL(2,Z)

Let G be a subgroup of finite index in I' = SL(2,Z); we wish to
calculate Hl(GiH* , . As a fundamental region for I on H we will
use the triangular region F with vertices at i®, 0, and p = }(1+/-3)
(see Diagram 4.1). The {0,i®»} edge of F is self-identified by S =
[? _é}. (The orientation is reversed: S interchanges O and i~ while
fixing 1i). The other edges are identified by TS (recall T = [1 1] 5

01
fp =~
so that TS = [i é} ) which fixes p and maps 0 - i~ =+ 1 = 0. So



Diagram 4.1

2
the transforms of F under {I,TS,(TS)} cover a larger triangle F+ with

vertices at iw, O, and 1. (See Diagram 4.1).

Write T = jzﬁ GYj where {Yj} jil is a set of right coset rep-
resentatives for G in T. Then a fundamental region for G in Ir is
given by jzh YjF since G(L&jF) = U(Gyj)F = TF = pr. Also the

tesselation of the upper half-plane with the transforms of F clearly
gives a triangulation of G\Pr under the natural projection }f a-G\Pr.
So one could calculate the homology of G\Pf by taking as generators the
three edges of YjF for each j = 1,2,...,k, and relations of two types:
one type recording that the sum of the three edges of each ij is zero,
and the other recording the 'gluing together' of adjacent ij. However
it is simpler if we unite the YjF in sets of three as in the diagram:
let F+ = F U (TS)F U (TS)’F so that F+ has edges {0,ic}, {iw,1} =
{Ts(0), TS(i®)}, and {1,0} = {(T8)?(0), (TS)2(iw)}. Then we can forget
about the inner edges entirely, and take as generators the single edge
{Yj(O),Yj(iw)} for each coset representative Yj; relations of £he first
kind

{Yj(O),Yj(im)} + {Yj(iw),Yj(l)} * {Yj(l),Yj(O)} = 0

for each coset representative Yj; and relations of the second kind



{Yj(o),vj(1°°)} + {Yj(lw),Yj(O)} = 0.

Writing (Yy) for the edge {Y(O),Y(iw)}G these can be written concisely as
4.1 @) (1) + (IS + GIHDH = 0
(ii) (y) + (ys) = 0.

If Gy = GYTS then (i) is to be interpreted as (Yy)

0, and similarly

if Gy = GyS then (ii) is to be interpreted as (Y) 0: this is because

Il

we are calculating the rational homology, which is torsion-free.
Writing [0] for the equivalence class of cusps modulo G containing
a € Q u {i»}, we can write the boundary map 3 from the space of l-cycles
to the space of O-cycles as
(4.1.2) oy) = [y(@=)1 - [y(O)]1,
extended by linearity.

Hence we have the following result.

Theorem 4.1.3 Form the Q-vector space with symbols (Y) as basis, for a
complete set of coset representatives Y of G in T, médulo all relations
of the form (4.1.1)(1),(11). Let H(G) denote the kernel of the
homomorphism 9 (defined by (4.1.2) and extended by linearity). Then
the map

(4.1.4) SO (ORI

gives an isomorphism from H(G) to HI(G\H*, Q).

Note: The boundary map 0 is well-defined since each of the relatioms
(4.1.1) has 'boundary 0'; that is, 9(y) + 3(yS) = 0 and

3(Y) + 3(yTS) + 3(Y(TS)?) = 0.

Notice that we are generating the homology entirely by paths whose
end-points are cusps: more strongly, we are only using paths of the
form {y(0),y(i»)} for y e T. In fact there is a simple way of expressing
any path between cusps as a sum of such paths. It suffices to do so
for paths of the form {O,%} for =

b

Write down the continued fraction convergents of

€ Q, a fraction in its lowest terms.

2
b



b b’ b o T b T0’% 7
(the last terms are added formally for convenience). Thenyas is well
k-l
known, akbk-l ak—lbk = (-1) , so that
k-1
3, D7
Y. := € r.
k % (—l)k—lb
k k-1
Then
n n
=il .
(4.1.5) {0,%} = 3 {;k— ; l;i} = {y, 0,y (=)},
k=-1 k-1 k k=-1

as required.

This device is important in the actual computations, since we have
a definition of various operators (Hecke operators Tp , and involutions
of various kinds) defined on points, and hence on homology and modular
symbols {A,B}G , but not directly on the symbols (Y); so we need to
pass from one to the other, and this is achieved by (4.1.4) and (4.1;5).

Two other ingredients are needed in order to make Theorem 4.1.3
into an algorithm: we need to give a set of cosét representatives for
G in I (and to determine to which coset any particular element of T
belongs); and we need to decide when two cusps are equivalent under G.
This will now be done explicitly for G = T(N).

Manin [10] gives a set of symbols, which I will call M-symbols,
which are in one-one correspondance with the cosets of I'y(N) in I', as
follows. Consider the set of all ordered pairs (c,d) where c,d € Z
and h.c.f.(c,d,N) = 1; call two such pairs (Cl’dl) and (CZ’dZ)
equivalent if there exists u € Z with h.c.f.(u,N) = 1 such that
c = uc, and d1 = ud2 (mod N); denote the equivalence class of (c,d)
by (c:d) and the set of such classes by PI(N) (the 'projective line'
over the ring Z/(N) ). We can map [ ~ PI(N) as follows:

(4.1.6) [a b] + (ewd).

c d

A simple computation shows that this map is constant on right cosets of



To(N) in T. It is surjective, since given c,d in 7z with (c,d,N) = 1

there exist a,b in 7 such that ad-bc = 1 (mod N); by (2.5.1) we can

find a',b',c' and d' congruent to a,b,c, and d (mod N) respectively,

such that a'd' - b'c' = 1; and then (c':d') = (c:d) is the image of
1 1

a' b, . A similar argument shows that the map is injective.

c' d

Moreover, the map (4.1.6) preserves the right coset action of T on

the coset space [I:G] provided that we define

(4.1.7) (c:d) [E CSIJ = (cp + dr : cq + ds),
; abllp g - ap + br aq + bs
S [c d](r s] [cp + dr cq + ds

for [z 2} e T. This makes M-symbols very easy and convenient to work

with: as in the above proof we can always assume of a symbol (c:d)
that (c,d) = 1; then if a and b are any integers such that ad-bc = 1,

we may identify (c:d) with {% : %} = {{i 3](0) , {i ZJ(iaQ}, and so

@

3((c:d)) = L%] = {%]. Note that a is only determined modulo c and
L

b modulo d, so that the fractions %~and % are only determined modulo
(
integers: this is consistent,since T (N) always contains lg i],so

that cusps whose difference is an integer are equivalent modulo Ty(N)
for every N.

In terms of M-symbols, conversion formula (4.1.5) reads

a o k-1

. = = s (~
(4.1.8) 0,2 = 2, G Db )
Note the alternating sign, and also that only the denominators of the
successive convergents appear in the formula.

As for equivalence of cusps, we have the following result.
Proposition 4.1.9 et 21 ; ) € Q be written in their lowest terms.

Then the following are equivalent:

(i) There exists vy e T'((N) such that Y(%l) = gQ;

1 2
(ii) 514y = 8,4, (modulo (qqu’N)) where pjsj = 1 (modulo qj) for j = 1,2.
Proof: For j = 1,2 choose r., and s, such that p.s. - rjqj = 1; then

fa = f.
- q p p = 3 = -r p =
Y, [s: -r}} e T and YICEI) 0, while ¥, lfsé q% e T and yé(O)



(;
%2 . Any element in ' fixing O has the form Ci

2 -
and we can ignore the possibility of minus signs since [ x _1] gives the

10
-x 1

O] for some x € Z,
%l

]. So the general element in T sending-gl

same transformation as [
1

to 22 is
ST R
= _ 5 ,
2(x 1)1 xq,4, + $19, 9,5,
and thus (i) holds if and only if we can solve the congruence
(4.1.10) Xq,4, * $,4, = q;8, = 0 (modulo N)
for x, which is if and only if (ii) holds.
Note that (4.1.10) implies that (N,ql) = (N,qz) so this condition,

decidable at a glance, is necessary for 21 and B2 to be equivalent.

9 EY)

84.2 The Algorithm for Complex Quadratic Fields: Common Features

In this section A will denote SL(2,0,), where K is any one of the
fields Q(v-d) for d = 1, 2, 3, 7, or 11, and G will denote a subgroup
of finite index in A.

Our plan for each field is as follows: choose a fundamental region
F for the action of A on H:, with {0,j®} as one of its edges; form a

larger basic polyhedron by taking the union of the transforms of F by

a finite subgroup G, which stabilizes a vertex P of F (compare Diagram

P
4.1 where the vertex p is stabilized by the subgroup of order 3, generated
by TS). In the simplest cases the only edges of the basic polyhedron
F will be the transforms of {0,j»}, one for each element of the finite

group G We will have 'face relations' to replace (4.1.1)(i), usually

P
of two types; and 'edge relations' to replace (4.1.1)(ii), to record

the juxtaposition of the transforms of the basic polyhedron: these
latter relations can clearly be found by considering the transforms which
share the edge {0, j~}. Then a Theorem similar to 4.1.3 will hold, for

G a subgroup of finite index in A, with those new relations to replace

(4.1.1)(1),(i1), between symbols (Yy) corresponding to the edge {y(0),y(jx)}



for each coset representative y of G in A. The boundary map § is given by

(4.2.1) 3() = [y(G=)] - [y(0)]
where [o] now denotes the equivalence class of the cusp o ¢ K y {jo}
under the action of G.

As before we can express any path {a,R} between cusps q and‘s (in K)
as a sum of paths of the form {y(0),y(jw)}, using the continued fraction
expansions of o and B. We can do this because K is Euclidean, so that
for any o ¢ K there exists £ e 0, such that la - &] < 1, where | |
denotes ordinary complex absolute value; hence we can define finite
continued fraction expansions for elements of K just as for rationals.
The successive convergents have the same properties as before, and the
analogue of (4.1.5) clearly holds.

The definition of M-symbols as coset representatives for the particular
subgroups A, (a), where a is an ideal of OK’ generalizes with no difficulty:
we let Pl(a) be éhe set of symbols (c:d) where c,d ¢ OK and (c,d) + a3 =
0K , with (clzdl) = (c2:d2) whenever there exists u ¢ 0K such that
(W +a =03
¢, T uc, d1 - ud2 € a.
Then (4.1.6) gives a map from A to Pl(a) which induces an isomorphism
of right A-spaces from [A:Ay(a)] to Pl(a), where the action of A on P](a)
is again given by (4.1.7).

The condition for cusps to be equivalent under A, (a) is slightly

stronger than (4.1.9)(ii) when 0K contains 'extra' units, namely when

K = Q{-1) or Q(/-3). For, the general element of A fixing O is now

uo0
%
{X u'?} where u ¢ OK. This last matrix has the same action as
2
[Ex ?J' Inspection of the proof of (4.1.9) now yields

Proposition 4.2.2 Letlgl, %2 ¢ K be written in their lowest terms.
1 2
Then the following are equivalent:

(i)  There exists Yy elg(a) such that y(gq) = By,
1 EY)
*
(ii) There exists u ¢ OK such that
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- 2
5,4, = u’s,q; (modulo (q,q,) + a)

192
where pksk = 1 (modulo (qk)) for k =1,2,
*

Note: If K # Q(/-1),Q(V/-3) then u? = 1 for all u € 0K so that condition
(ii) may be replaced by the simpler

ceny -

(ii) $,4, = squ (modulo (qqu) + a).
If K = Q(v/~1) then u? = #1, and if K = Q(/-3) then u? = 1, @, or w? where
w= 3(-1 + v=3).

The main involution J of 3.3 is given by

(4.2.3) ey -+ ({e‘l o]Y[e 0]\

o 1j"0 1))
which in terms of M-symbols becomes
(4.2.4) (c:d) = (ec:d)
where € is a generator of the unit group 0;. To calculate the action
of the Hecke operators and W-involutions we first convert to modular
symbols via (4.1.4):
(4.2.5) (v) = {y0),y(G=)}.
For the Hecke operators Tﬂ, where T is a prime element, we then use the

formula

.2.6) T_:{a,8Y> 7 {XEE& B*E (ra,me)
il € mod () T T

obtained from (3.3.5). Similarly from (3.3.10), for the involution WTT

we use the formula

Wpr +y }

r
4.2.7) W_: {a,8} » {TX&2Y
T NzB + Wrw

Nzo + ﬂrw ’
where a = (N), and r is the highest power of 7 dividing N, and x,y,2z,
and w are chosen so that

ﬂzrxw = Nzy = Wr.
Lastly we reconvert all the modular symbols appearing on the right of
formulae (4.2.6) and (4.2.7) to linear combinations of M-symbols, via
(4.1.8).
Let V(a) = H](Ao(a) \ HY , Q. We can decompose V(a) according to

the eigenvalues of J as
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V@ = V() e V (a)
where J acts as +1 on V+(a), ani as -1 on V—(a). Now as abstract
vector spaces we have

vl = v(a) / V (a)

and V_(a) = {x-xJ : x € V(a)}. In practice it is often convenient to
calculate V+(a) in this way, by including extra relations of the form
(4.2.8) ) = J(n
or, in terms of M-symbols,
(4.2.8)" (c:d) = (ec:d).
The advantage is that by means of (4.2.8) or (4.2.8)' we can halve the
number of symbols we have to work with, which means that the time taken

for certain stages of the calculation is reduced by a factor of four;

the amount of space is also reduced, which can be an important consider-—

ation when Na is large. Also, by means of (4.2.8) we can often simplify

the other relations, thus saving time again. This will be seen in
particular cases in the following sections of this Chapter.

Care must be taken in calculating 9 under this scheme: since 9 does
not annihilate all of V (@), it does not induce a well-defined map on
the quotient V(a)/V (a). However, a moment's thought shows that we can
avoid this by calculating the kernel of 0 + 3J instead of 9, since
the map 1 + J projects'V(a) onto V+(a).

Similarly we can calculate V_(a) as V(a)/V+(a) if we include the
extra relations
(4.2.9) ) = -=J(Y), or
(4.2.9)" , (c:d) = - (€c:d),

and restrict to the kernel of 9 - 93J instead of the kernel of 9.
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84,3 The Algorithm for Q(v-1)

Let 1 = v-1 and A = SL(2,2[1i1]). Recall from 82.4 that S = {? _é},

T = (11 U = 1.3 and R = i We replace half the fundamental
[0 1 01 io0)°

region D given there by its image under S to get a fundamental region F

for A which is spike-shaped (see Diagram 4.2) with vertices at 0, o, and

at three points on the unit sphere: By - (4,0,31v3), P, = (4,%,3v/2) and

P3 = (0,1,1v3). The lower curved faces are parts of spheres, and they

meet along a common circular arc between 0 and P The stabilizer of

9"
edge PIPZ is of order 3, generated by TS. The stabilizer of edge P3P2
is of order 3, generated by UR. The stabilizer of P2 is the group GP
= <TS,UR> of order 12 (sketch proof below): so 12 transforms of F meet at
P2. The union of these 12 forms the 'basic polyhedron' F+ which is a
(hyperbolic) octahedron, with four vertical ﬁaces meeting at « (each
subdivided by the edges of F and suitable transforms of F in the manner
indicated in Diagram 4.1) and four curved faces meeting at (i,31,0). A
sketch of F+, and a plan of its projection onto the 'floor' are given in
Diagram 4.3. So there are twelve edges: four vertical half-lines
meeting at ®; four semicircles of diameter 1 in vertical planes, joining
the vertices 0,1,1+i, and i; and four semicircles of diameter }v2
meeting at 1(1+i). These edges are precisely the images of {0,*} under

the action of GP'

Sketch proof: 1In order to determine the stabilizer of P2 one proceeds

Ly/5 1 i
as follows. The matrix [202 2(1?1)] transforms j (= (0,1)) into P2,
=1 i
while [é 2(1:é)] does the reverse. The general element in GL(2,C)
2

uvwv
B

[g/z 1E+i)) [u v) 1 -1+i)
0 1 -v uj (0 1v2

fixing j has the form ] ; so the general element in GL(2,C)

fixing P2 is



Diagram 4.2

Diagram 4.3

Plan:

I+1

1(1+1)




luv2 - Lv(1+i) 1@ - u)(1+1) + tv(1+1)? + §v

-v Iv(1+i) + 4 2u
The conditions that this matrix should lie in SL(Z,OK) are firstly that
the entries should be in Z[iJ], and secondly that the determinant should
be 1. This second condition is  §(|u|? + |v|?) = 1. The first
certainly implies that v e Z[i], and then also (by considering the upper
left entry) that w ¢ Z[i] where w = (i-1)u/v2. So we need to look at
pairs of Gaussian integers (w,v) such that |w|? + |v|® = 2. Clearly
we must have (IW|2,|V|2) = (2,0), (1,1), ot (0,2). This eventually
leads to 24 pairs (w,v), and hence 24 elements of SL(2,Z[i]) which fix
P2’ or 12 elements of PSL(2,Z[i]): they form the group <TS,UR> as
stated above.

To determine the shape of the basic polyhedron, one first calculates
the vertices of the 12 transforms of F under the action of GP; then
one glues together those transforms with a face in common; lastly, one
ignores internal edges and vertices (as in Diagram 4.1 where three
transforms of the triangle F are glued along common edges, and then the
three internal edges aﬁd the vertex p are erased to give the larger
triangle F+).

Similar computations have to be carried out for the other four fields:
in subsequent sections, all such details are omitted for the sake of
brevity.

So to generate the l-homology of the quotient space of H: by the
action of a subgroup G of A, we take a symbol (Y) representing the path
{Y(0),Y(=)} for each matrix Y in a set of coset representatives for G in
A. Relations between these are given first by the boundaries of the
triangular faces of F+ and its transforms: these are of two types:

(4.3.1) (1) (Y) + (YTS) + (Y(TS)?) 0;

(ii) (y) + (YUR) + (Y(UR)?) 0.
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Secondly, observe that four copies of F+ meet at the edge {0,»}: its

images under I and RS (with orientation preserved), and under R and S

(with orientation reversed). This gives relations

(iii) &) + (R) = O3

(iv) &) + (8) = 0.

The other relation, (Y) = (YRS) , is a consequence of (iii) and (iv).

The boundary of (Y) is given by (4.2.1). So we have the following
result.

Theorem 4.3.2 Form the Q-vector space with symbols (Y) as basis, for

a complete set of coset representatives Y of G in A, modulo all relations
of the form (4.3.2)(i),(ii),(iii), and (iv). Let H(G) denote the kernel
of the homomorphism o defined by (4.2.1) and extended by linearity. Then
the map
br + Ayp@y x0T,

gives an isomorphism from H(G) to H](G\H:, Q);
Note: The boundary map 9 is well-defined because each of the relations
(4.3.1)(1) - (iv) has boundary zero: this is clear since TS permutes
0, ©», and 1 cyclically; UR permutes 0, ©, and i cyclically; while both
R and S interchange 0 and .

In the case G = Ag (@) we can use M-symbols as coset representatives.

The relations become

(4.3.3) (1) (c:d) + (ctdi-c) + (di-c-d) = O
(ii) (c:d) + (ic+dic) + (dric+d) = O
(iii) (c:d) + (d:c) = 0;
(iv) (cid) + (-d:ic) = o.

Notice that (iii) and (iv) together imply that (c:d) = (-c:d) for all
symbols (c:d).
*
Let V@) = H]( A({;_-z)\l-l3 , Q). Then Theorem 4.3.2 becomes

Theorem 4.3.4  Form the Q-vector space with symbols (c:d) as basis

elements, for each (c:d) € P](a), modulo all relations of the form

(4.3.3)(i),(ii),(iii), and (iv). Let H(a) denote the kernel of the



boundary map 9. where

(4.3.5) 3(c:d) = {%} = {3] ,
extended by linearity. Then
(4.3.6) (c:d) » £ , 2

gives an isomorphism H(a) = V(a).
Note: In (4.3.5) and (4.3.6), a and b are any numbers in OK chosen
so that ad-bc = | (recall that in any symbol (c:d) we may assume that

c and d are relatively prime).

Let Ii = {3 ?]. Then we have the relations
T, '§T, = R
i i
and 17817 = UR,
i i

so that J sends relations of the form (4.3.3)(iii) into relations of the
form (4.3.3)(iv), and relations of the form (4.3.3) (i) into relations of
the form (4.3.3) (ii). Hence if we follow the 'short cut' scheme of §4.2

and introduce either the relation

(c:d) = (dc:d)
(for V+(a)), or the relation
(c:d) = -(ic:d)

(for V_(a)), then we may omit relations (ii) and (iv) altogether,

leaving us with just three types of relation:

(4.3.7) (i) (c:d) = #*(ic:d);
(ii) (c:d) + (-d:ic) = O
(iii) (c:d) + (c+di-c) + (di-c=d) = O.

Notice that the latter two are simply the 'rational relations' used

in 84.1, coming from the.relations S2 = (TS)3 = I of the modular group
SL(2,2). So the relations we have to apply to the symbols consist of

the 'ordinary' modular relations, from S2 = (TS)3 = I, with some additional
relations. Suppose that the ideal a is generated by an element a+bi e Z[i]
with h.c.f.(a,b) = 1. Then Z[il/a = Z/(a®+b?), and so P' (a) = P (a2+b?).

* %
Hence in this case HT(AO(a)\HB,Q) is a quotient of HT(To(az+b2)\H ,Q):



here the first superscript '+' denotes the homology invariant under the

main involution (z,t) - (iz,t) , while the second denotes the homology

invariant under the conjugation involution z =+ -z. This is because

the latter involution has the effect "(c:d) -+ (-c:d) on symbols, and

our relations (4.3.7)(i) imply that this action is trivial. So we

have the following result.

Theorem Let N € Z be expressable as a sum of two squares, N = a? + b2,

with (a,b) = 1. Let a be the ideal of IZ[i] generated by a+bi. Then
dim s"(a) = dim S (To(W).

Notes: (i) The condition on N is that it should not be divisible by 4

or by any prime p = 3 (mod 4).

(ii) The inequality is in fact very weak: examination of the results

of computations of dim S+(a) given in Table 5.1.1 shows that the smallest

N for which dim S’ ((a*bi)) > 0 is N = 65, whereas dim s;(ss) =5.

(1i1) Similar remarks will hold for the other fields considered in the

thesis: 1in each case, the relations between symbols will be obtained by

adding one or more types of relation to the 'rational' relatioms.

We can sum up the results of this section in the following.

Theorem 4.3.8 Form the Q-vector space with symbols (c:d) as basis

elements, for each (c:d) « Pl(a), modulo all relations of the form
+
(4.3.7) (i), (ii) and (iii). Let H (@) denote the kernel of the map

+
9", where

£ [a]l _ [b] . [za] _ [-B]
3 (c:d) ‘= 93(c:d) * 3(~e:d) = (= = i={ x| —|F i —1 »
lc] " la] " [e] T e
extended by linearity. Then
b a -b -a
. — — + — —_—
(c:d) +{d,c}_{d, c}
+ +
gives an isomorphism H (a) =+ V (a). It is understood that one choice of

sign is taken consistently throughout.
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§4.4 The Algorithm for Q(v/-3)

Let p = $(1+/=3) and @ = P-1 = {(=1+/-3). Recall from §2.4 that

1 0o
01 w0
be convenient to consider, as well as A, the larger group A' =

{ra b . a;b;esd Zlp] ad-bc =+1} so that A' = A -1 0
c af @ 2Pscsd < 2Ll = Ylo

that the projectivization A' is the whole of PGL(2,Z[p]) since the
. * * 2 -10
group of units modulo squares, OK/(OK) , has order 2 and 01

in the nontrivial coset. A fundamental region for A' is given by

[ ( .
A= SL(2,Z[p]) is generated by S,T,U = L p] and R = [ ]. It will

]A. Note

] lies
cutting the region D of §2.4 in half; if we then replace half of this
by its image under S, we obtain a fundamental region F for A' with
vertices at 0, o, P, = ((1+p)/3,/(2/3)) and P2 = (1,0,1/3) (see Diagram

4.4), Let P3 = ((2p-1)/3,v(2/3)). Then the edge P is stabilized

)

as usual by <TS>, of order 3, while edge P is stabilized by <V> where

2P
V = TU_IRSR, also of order 3. Vertex P2 has stabilizer GP = <TS,V>
which is of order 12, and is contained in & since detV = detTS = 1. The

12 transforms of F under G_ thus all have a vertex at P they fill out

P 2’

a tetrahedron F+ with vertices at 0, 1, = and p (see Diagram 4.4). The
six edges of F+ consist of three vertical half-lines from « to 0, 1, and
P> and three semicircles in vertical planes joining O, 1 and p. Each
edge belongs to precisely two of the unit cells (transforms of F) and
is the transform of {0,x} under the corresponding two elements of GP'
This redundancy of edges will be reflected in certain extra relations
among the symbols later.

So to generate the homology of G\H: where G is a subgroup of finite
index in A we require a symbol (y) for every matrix vy in a set of coset

representatives for G in A', representing the edge {y(0),y(x)}. The

redundancy observed immediately above is recorded in the relation

(4.4.1) (y) + (yR) = 0
since R interchanges 0 and . There are two types of 'face relation',
namely

(4.4.2) (") + (YTS) + (Y(TS)®) = 0, and



Diagram 4.4

Plan:

P4
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(4.4.3) (Y) + (yvv) + (W% = o.
The edge relations record which transforms of F meet at the edge {0,x},

and are generated by (4.4.1) and

(4.4.4) (y) = (YIp)
_ PO
where Ip = [0 1].

Now if {Yi}§=1 is a set of coset representatives for G in A, we can
obtain a set of representatives for G in A' by taking {Yi}§=1 U {I;]Yi}§=].
Write Y+ for Y and Y_ for I;IY; then (4.4.1) = (4.4.4) become

s + +

(1) ) + (R = 0
.. + + + )

(ii) () + (YTIS) + (Y (I8)°) = 0;
Y + + + 5

(iii) G+ V) o+ YV = 0
. iz +

(iv) &) = (y Ip).

The involution J induced by conjugation with Ip can be written

-1
(v) (I, ¥1)

so we have Iy = 1)
and 300 = &1
using (iv) we get
Iy = o) 5 I6) = @),

Also, I;]TSIp = V, so that each relation of type (iii) is obtained by

applying J to a relation of type (ii). Hence if we impose the extra
relations

vy = 3
or ) =-=3(v)

we can dispense with the (Y ) symbols and with relations (iii) and (iv).
We can also replace (i) with

(y) + (y8) = 0
since RS = I; which by {(iv) acts trivially. So much simplification is
gained by calculating the eigenspaces for J separately, and we have the
following result.

Theorem 4.4.5  Form the Q-vector space with symbols (Y) as basis, for a

complete set of coset representatives Y of G in A, modulo all relations



of the form

(1)
(11)

(111)

+ +
Let H (G) denote the kernel of 3~ = 9 * 3J.

v) = l“(\(Ip);
(y) + (ys) = 0;
(y) + (yI8) + (y(TS)?) = O.

%
to the eigenspace of HI(G\H3,Q) on which J acts as #*1.

Of course
for G in A.
(1)

(i1)
(iii)

The adjusted

when G = Ag(@8) we can use M-symbols as coset representatives

Relations (4.4.5)(i) - (iii) become

(ead) = E(pezd);
(c:d) + (-d:c) = O0;
(c:d) + (c+d:-c) + (d:i=c=d) = O.

+
boundary operators 9 have formulae

ey - 2] < 5]« (fes] - [)
R R b R e Rl

+
Then H (G) is isomorphic
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§4.5 The Algorithm for Q(v/-2)

Let 6 = V-2 and A = SL(2,2[61]), and set U = [é ?]. Let A" = A u (—é ?]A
{

be the larger group of matrices with determinant =I. It follows from

P
§2.4 that a fundamental region for the action of A' on H3 is the spike-

shaped region F with vertices at 0, o, P1 = (4,1/3), P2 = (1(1+8),1), and

P3 = (46,1v2). As usual, edge P is stabilized by <IS>, of order 3.

]P2

Now PP, is stabilized by a group of order 4 generated by USI_ (which

2"3 1

has determinant -1). The full stabilizer of P2 is thus <TS,USI_1> which
has order 24. The 24 transforms of F under this group GP each have a

vertex at P, and fit together around P

9 to form the basic polyhedron F+,

2
which in this case is a cuboctahedron (with six quadrilateral faces and

eight triangular faces). For a picture of F+ and a projection onto the
floor, see Diagram 4.5. The 24 edges are the images of {0,®} under GP’
precisely one to each transform of F. So as in the case of Q(/-3), to

generate the l-homology of G\H: for a subgroup G of A or A' we must use
symbols (Y) for each matrix Y in a complete set of coset representatives
for G in A', corresponding to the edge {y(0),Y(®)}. As face relatioms

we have: for the triangles,

(4.5.1) () + (IS) + (y(Ts)®» = o,

and for the quadrilaterals,

I
o

(4.5.2) (Y) + (YUSI_ ) + (y(USI_)?* + (y(@USI_)?

1 1

As for the edge relations: four copies of F+ meet at {0,»}, namely its

1

images under I, I S and SI—I’ giving us the relations

-1?
(4530 ) + (y8) = 03
(4.5.4) v = I_p.

As with Q(v/-3) Qe can convert the symbols and relations in such a way
as to involve only a set of coset representatives for G in A. Let {y} be
such a set, and let Y+ =y and Y = I_,Y, so that {Y+} u {y } is a set of
coset representatives for G in A'. Then relatioms (4.5.1),(4.5.3) become

+ + -
(Y) + (YIS) + (y(TS)?) = 0

+ +
and (y) + (ys) = 0,
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+ + ot

or Y o+ ((y18)) + ((Y(TS))) = 0
+ +
and (v) + ((y8)") = 0;
while because I_1 has determinant -1 we have (YiI_l) = (I_lyil_l) = J(yH;
hence (4.5.4) becomes
) = I

while (4.5.2) becomes

() + (US) + (y(USI_US)) + (y(USI_)’us) = oO.

As before, we can simplify considerably by assuming that J acts as a scalar
*1; that is, by including extra relations (y) = =J(Y). The result is:

Theorem 4.5.5 Form the Q-vector space with symbols (Y) as basis, for a

complete set of coset representatives Y for G in A, modulo all relations

of the form

(i) , () = =(vI_);

(11) vy + (y8) = 03

(iii) (Y) + (y18) + (YV(I9)?) = 0;

(iv) (v) + (y8) + (y(USI_)?® + (y(usi_)?vs) = 0.

1
+ + 2
Let H (G) denote the kernel of 9~ = 93 * dJ. Then H (G) is isomorphic to

*
the eigenspace of HI(G\H3,Q) on which J acts as #l1.

In terms of M-symbols, when G = Ag(a), the relations are

(1) (c:d) = #(-c:d);

(i1) (c:d) + (-dic) = 0;

(iii) (c:d) + (c+tdi=c) + (d:-c-d) = O0;

(iv) (c:d) % (Be+dic) + (—c+ed:6c+d) t (d:c-6d) = O0;

+
the adjusted boundary maps 9 have formulae

s Ja]_[b]. ([-a] _ [])
o exd) = 1T 7 la] P \Ted T Tl

The reason for the alternating signs in (iv) above is the following: for

computational convenience we wish to express the terms in (iv) as an orbit

of a single matrix USI_l; but USI_l has determinant -1; so if ad-bc =1
fhen ab USI _ ab+b a
c d -1 cb+d ¢



where the matrix on the right-hand side has determinant -1; now

according to (4.2.5) the latter corresponds to the path = ae+b}.

¢’ch+d
However, the symbol (Bc+d:c) corresponds to {§’cezd} where
yc - x(cb+d) = +1, so that we may take x = —-a, and y = —-(ab+b), and then
a ab+b  _ =X -y _ X
{ c ’ cb+d b=1 c ’ cO+d b=3d c ’ cb+d b
=:t{§ L_}’
c 7 cb+d

according to which sign we have chosen in (i).



§4.6 The Algorithm for Q(v-7)

o
01

l ]. Again we
will have to consider the larger group A' = AU {—é ?J . In 82.4 we

(
Let o = §(1+/-7) and A = SL(2,Z[al), and set U = [

gave a fundamental region for A, consisting of points (z,t) such that

a) z|?2 + t2 2 1, so that (z,t) 1s outside the unit sphere;
’ P

b) =z is inside the 'fundamental hexagon' of points in the complex plane

nearer to 0 than to any other element of Z[o] (see Diagram 4.6).

=2+0, - -1+a o 1+0

B"

A’ A

I
s
I
Nl
o
Nl

N

-1=-q -0, 1-0 2-a

Diagram 4.6

It is clear that we may obtain a fundamental region for A' by keeping only
those (z,t) for which z lies in one of the regions A, A', B, or B'.
Replace the points above A' and B' (which are above the unit sphere) with
their images under S: these lie within the unit sphere and over A and B.
Lastly, translate all the points above B by U so that they lie above B"

(see diagram). This gives a fundamental region F for A' with vertices
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at 0, «, o, B, = (4,4V3), P, =((30+2)/7,/(3/7)), and P, = ({a,34v2): see

Diagram 4.7 for a plan. The stabilizer GP of P2 has order 6, and is

generated by TS (which has order 3 and fixes the edge Ple), and Y =
[lla :?} (which has order 2 and fixes the edge P2P3). These satisfy
YTSY = (TS)2, and so GP is isomorphic to the dihedral group of order 6.

As before, we let F+ = YgGP(YF) be the basic polyhedron. It i5 a
triangular prism with vertices at 0, 1, «, o, {0, and ((I+a): see
Diagram 4.8. There are nine edges: six are the images under GP of
{0,»}, and bound the triangular faces <0,1,®> and <a,ia,i(1+a)>; the
others are the images under GP of the edge {o0,»} of F, each océurring on
precisely two of the images of F.

So to generate the l-homology we have to start With two kinds of
generator: the usual symbol (Yy) representing {y(0),y(x)} , and a second
symbol [y] representing {y(a),Y(®)}. We clearly have the relation
(4.6.1) vyl = (yO,
and because the edges [y] each lie on two images of F, we have the relation
(4.6.2) [yl + [yTsyl = O.

As for face relations we have first, for the triangles,

(4.6.3) () + (yIs) + (v(19)*) = o,

and for the quadrangles:

(4.6.4) (v) - [yl + (YY) - [y¥l = O.

As edge relations, the only ones we need are

(4.6.5) (y) + (yS) = 0, and

(4.6.6) ) = GI_),

since the other .is (Y) + (YSI—I) = 0, which is a consequence of these;
also, (4.6.2) is now redundant, being a consequence of (4.6.1) and (4.6.5)
since we have the matrix identity TSY = USU_I. So we may ignore the
second type of symbol altogether , if we use relations

(4.6.7) (1) ) = «I_

1);

(i1) (v) + (ys) = 03



(iii) ) + (YIS) + (y(18)®» = 0;

(iv) vy - (vo + (v¥) - (yyu) = 0.

Theorem 4.6.8 Form the Q-vector space with symbols (Y) as basis, for a

complete set of coset representatives Y for G in A', modulo all relations
of the form (4.6.7}(1), (ii), (iii), and (iv). Let H(G) denote the
kernel of the boundary map J, defined by (4.2.]) and extended by linearity.
Then (4.2.5) gives an isomorphism from H(G) to HI(G\N:’Q)'

As before we can make do with the smaller set of symbols corresponding
to a set of coset representatives for G in A by adjusting the relations
suitably. We omit the details, which are simpler than for Q(v¥-2) since
all the matrices appearing in relations (4.6.7) have determinant +1

(except for £ ol ), and merely state the result in terms of M-symbols for

1
G = Ag(a).

Theorem 4.6.9 Form the Q-vector space with symbols (c:d) as basis,

for each (c:d) € P](a), modulo all relations of the form

(1) (c:d) = *(-c:d);

(ii) (c:d) + (-d:ic) = O

(1ii) (c:d) + (c#d:i-c) + (di-c-d) = 0;

(iv) (esd) <+ (oetdi-e) +  (e+(l-G)di=tic=d) + [(~dict(l~8)d) = O.

- & +
Let H (a) be the kernel of 9 9 + 3J. Then H (@) is isomorphic to

+
vV (a).



§4.7 The Algorithm for Q(v=11)

Here the geometric situation is very similar to that for Q(v~7): we
may make use of Diagrams 4.6 and 4.7 and construct the fundamental region
F in a similar manner. Now, of course, o = 3(l+v~11), and the vertex P2

of F has coordinates ((3+5a)/11,v(2/11)). The stabilizer GP of P2 has

-
a]’ which also

order 12: it is generated by TS, of order 3, and X = lu—l 9

has order 3; they satisfy (XTS) * = I. The fundamental polyhedron F+ =

u
YeGy

hexagonal faces: see Diagram 4.9.

(YF) 1is now a truncated tetrahedron, with four triangular and four

We again let (Yy) = {y(0),Yy(=)} and [yl = {y(a),y(«)}. The triangular

faces of F+ have edges (Y) for y € GP; the hexagonal faces have alternate

edges of type (Y) and [yl. So the relations are:
(4.7.1) (1) vyl = (vU);
(ii) [yl + [yrsxl = 0;
(iii) (V) + (v8) = 0;
(iv) [yl = [wI_u '}
(v) M = (I_)Ds
(vi) (M) + (I8 + (YTHD = 03
i)  (m - Iyl + (@ - I+ () - [ = 0.

Of these, (ii) and (iv) follow from the others, and by means of (i) we can
avoid the use of the second type of symbol altogether.

Theorem 4.7.2 Form the Q-vector space with symbols (Y) as basis, for

a complete set of coset representatives Y for G in A', modulo all

relations of the form

(i) () = (I_)s
(ii) () + (8) = 0

(1ii) (Y) + (yIs) + (Y@ = 0;

(iv) M - (U + (8 - () + (x*) - (x'm) = 0.

%
Let H(G) denote the kernel of aJ. Then H(G) is isomorphic to Hl(G\H3,Q)

via (4.2.5).
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In terms of M-symbols for Ag(a), the result reads as follows.

Theorem 4.7.3

each (c:d) € Pl(a), modulo all relations of the form

(£} - (c:d) = Z(-e:d);

(ii) (e:d) + (~dz2e) = 03

(ii1) (c:d) + (ctd:-c) + (d:i-c-d) = 0
(iv)

+ (=2c+(a-1)d:oc+d) + (cc+2d:-2c+(a-1)d)

% 4
Let H (a) denote the kernel of 3 = 93 = 3J.

+
to V (a).

(c:d) + (QC+d:—c) + (=c+(o=1)d:co+2d) + (=d:c+(1-0)d)

Form the Q-vector space with symbols (c:d) as basis, for

0.

+
Then H (a) is isomorphic



§4,8 Other Quadratic Fields

In order to extend the algorithms just described for the Euclidean
fields to the other complex quadratic fields K with unique factorization
(namely Q(/-d) for d = 19, 43, 67 and 163), one encounters some geometric
and some algr.braic difficulties, but these do not seem insurmountable.
Because not every element of K has a representative modulo OK of norm

~ *
less than 1, the fundamental region for SL(2,OK) acting on H, has a

3
curved floor consisting of more than one section of sphere (whereas
above, the unit sphere with centre 0 sufficed): for example, see Swan
[20] section 16, where the case Q(V/-19) is worked out. However, similar
arguments to the ones used above would probably produce suitable
'fundamental polyhedra', leading to a result similar to Theorem 4.3.2.
The other difficulty is that, of course, we would no longer have the
Euclidean Algorithm; apart from the use we make of this in general
arithmetic computations, we also used it in converting any modular symbol
whose end-points are cusps to a sum of fhe form Z{y(0),y(j*)} for some
matrices Y € SL(2,OK). However, careful inspection of the procedure

which brings an arbitrary point of H, to within the fundamental region

3
(using, as well as translations, and inversions in the unit sphere with
centre 0, inversions in the other unit spheres bounding the fundamental
region) should yield an algorithm for these fields.

When the class number h of K is greater than one, the fundamental region
has more than one cusp (as remarked in 83.2, the number of cusps is equal
to the class number). This makes the geometry more complicated still,
and the definition of a cusp form would need to take into account the
fact that not every-cusp is equivalent to the cusp at infinity under the
action of SL(2,0K). Alternatively, it is quite likely that one should

use not PSL(2,0,) but some larger group, under the action of which every

cusp is equivalent to j~, as the main discrete group acting on H3.



As for modular symbols, one might have to use more symbols than just

those of the form {Y(0),Y(j*)} to generate homology; details of the
calculations, such as manipulation of the M-symbols, would also be more
difficult. However I see no fundamental reason why the algorithms

given in this chapter for the Euclidean fields could not, with more work,

be extended to any complex quadratic field.
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CHAPTER 5

The Computations and Results

For each of the five Euclidean fields discussed in the previous
Chapter, computer programs have been written in Algol 68 which carry
out the algorithms presented there, in terms of M-symbols. These
programs have been run on an ICL 2980 computer at the Oxford University
Computing Service. Thus we have been able to calculate, for each
field K and each ideal a of 0K such that Na is not too large, the
dimensions of V(a), V+(a), and V_(a); the actions of the main involution
J, the Wﬁ involutions for each prime T dividing @; the action of the
Hecke operator In for any prime T not dividing 2; the splitting of V(a)
into one-dimensional spaces which are eigenspaces for all these operators;
and the eigenvalues on each such subspace. By inspection, we can easily
determine which of these eigenspaces correspond to oldforms, since we
will have already met them as newforms for A, (b) for some b dividing a.

For each field we give first a table showing for each ideal @ (with
norm up to some bound) the dimensions of V(a), V+(a), and V_(a) as well
as the dimensions of the corresponding spaces of newforms for A, (a).
Then for the "+" and "-" spaces separately we list, for each level, the
first fifteen Hecke eigenvalues for each newform. Thus two limits had
to be set for each field: the upper bounds for the norm of the level a,
and for the number of Hecke operators of which to calculate the action.
These limits were decided in terms of how much computer time was available:
in all cases the physical limitations (storage space and size of integers
encountered) would have allowed the computations to be extended much
further. For example, for Q(i), the systematic coverage of all levels
stops at norm 500, but a few isolated levels were calculated up to

(32 wdeh morn 4096,



As well as the systematic coverage of all levels a with norm Na less than

a certain bound, a few sporadic cases were also computed for ideals of
larger norm: firstly, to gather evidence for Claim B of §5.6 before this
was proved, and secondly when it was known that there existed elliptic
curves with the corresponding conductor. For example, R.J.Stroeker's
thesis [ 19] gives tables of all elliptic curves over Q(v/~1) and Q(v/~2)
with bad reduction only at the prime dividing 2; for Q(v-1), extra
calculations were done with powers of (1+i).

For the first three fields, some of these calculations have been
previously carried out by Mennicke and Grunewald, working in Bielefeld.
They only work with split prime ideals, for which the M-symbols just reduce
to elements of the projective line over a finite field GF(p), for a ratiomal
prime p. The relations they use are derived in an algebraic, rather than
a geometric way, described in [11 ] for the case Q(/-1). In this paper
they also give results for Q(v/-1), Q(¥-2), and Q(¥-3), which agree with
the tables in this Chapter insofar as they overlap.

We have also made a systematic search for elliptic curves with small
conductor over each of the five fields. Here we implement on the computer
Tate's algorithm (c.f.[ 21) to determine the type of the reduction of an
elliptic curve at a prime p, given its coefficients 353558458, and ag
(see equation (1.4.1)). It is easily seen from the formulae given by
Tate (op. cit.) that we may assume that ars az, and ay are reduced modulo
2, 3, and 2 respectively; so the search consists of a systematic stepping
through an enumeration of the pairs (a4’36): for each pair, all values of
a and a, (mod 2) and a2 (mod 3) are considered.

In the next five sections the following tables are given for each field:
1) The dimensions of V(a), V+(a), and V_(a), and the corresponding
subspaces of newforms, for each ideal a, with norm less than a fixed bound.
This bound was 500, 300, 500, 200, or 200 for Q(/-1), Q(/-2), Q(/-3),

0(/L7), and Q(/-11) respectively. Levels a with dim V(a) = 0 are omitted
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from the Table for brevity. Also, only one ideal of each conjugate pair
a, a is given, since obviously conjugation induces an isomorphism from
V(a) to V(a).
2) A list of the first fifteen Hecke eigenvalues for each 'newform' in
V+(a), together with the eigenvalues of the W involutioms.
3) As for Table 2, but for V_(a).
4) A list of elliptic curves defined over K, in order of the norm of the
conductor. The coefficients and various invariants of each curve are
given, as well as the Trace of Frobenius at each of the first fifteen
primes (in a separate Table). Only one of each pair of conjugate curves
is listed; only one curve from each isomorphism class is included;
isogenies between listed curves are indicated.

In Table 4, no claim of completeness is made. There are, almost
certainly, more curves with small conductor, with coefficients outside
the search region. In particular, we expect there to exist an isogeny
class of curves with conductor a to correspond to each newform in V+(a)
(see §5.6), but comparison of Tables 2 and 4 for each field will reveal
that some of these expected curves have not yet been found. There is
some precedent for this in the rational case: for some conductors,
for example 78, no curves were found by any systematic search. Of course
Tingley's method, described earlier, gives a method for constructing
curves directly from newforms, in the rational case. Eventually we
expect to fill the gaps in the Tables for the five Euclidean fields, but
at present we give, at the foot of Table 4 for each field, a list of
'missing' conductors.

For the field Q(V/-1), extra tables are given of curves with conductor
a power of (l+i): these are taken from [19 1; there are also extra tables

of newforms at the corresponding levels.
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for e £ 12

Zeta Functions

§5.1 The Results of Computations for Q(v-1)

Table 5.1.1 Ideals a of Z[i] with Na < 500 and dim V(a) > O
Table 5.1.1a Dim V((1+i)e) for e £ 12

Table 5.1.2 Rational Newforms in V+(a)

Table 5.1.3 Rational Newforms in V_(a)

Table 5.1.4 Elliptic Curves with small Conductor

Table 5.1.4a: Elliptic Curves with Conductor (1+i)e

Table 5.1.5 Elliptic Curves with small Conductor:

Table 5.1.5a: Elliptic Curves

with Conductor (1+i)e:

Zeta Functions



Table 5.1.1: Ideals a of Z[i] with Na < 500 and dim V(a) > O

Only one ideal of each conjugate pair is given. Numbers in parentheses
refer to dimensions of spaces of newforms. The 'splitting field', which
is Q unless otherwise specified, is the smallest extension of Q containing

all the eigenvalues of the Hecke algebra acting on V(a).

a Na | dim v(a) | dim V' (a) | dim V (a) | Splitting Field
(7 + 4i) 65 | 1 1 0
(8 + 21) 68 | 1 0 1
6 + 61) 72 1| 1 1 0
(7 + 79) 98 | 1 1 0
10) 100 | 1 1 0
(9 + 59 106 | 1 1 0
an 181 115 1 0
(9 + 74) 130 | 1 1 0
1 +3) [ 130 2 @ 2 (O 0
(10 + 61) | 136 | 2 0 2 (O
A1 + 41 | 137 | 1 0 1
12) 144 | 3 (D 2 (O 1
(9 + 81 145 | 2 0 2
12 + 145 | 1 0 1
(12 + 4i) | 160 | 2 1 1
(10 + 8i1) | 164 | 1 1 0
(12 + 6i) | 180 | 1 0 1
13 + 4i) | 185 | 1 0 1
(13 + 5i) | 194 | 2 2 0
(14) 196 | 2 (O 2 (O 0
(10 + 10i) | 200 | 3 (D) 3 M 0
M4 +4i) | 212 | 2 (O 2 (O 0
(15) 225 | 1 1 0
(13 + 8i) | 233 | 1 1 0
A1 +119) | 262 | 2 (O 2 (O 0
(16 + ) 257 | 1 1 0
(14 + 89) | 260 | 3 (O 3 (0 0
(16 +2i) | 260 | 2 (O 2 (O 0
(16 + 3i) | 265 | 1 1 0
(16 + 4i) | 272 | 4 (D 1 3 (0
(15 + 79) | 274 | 2 (O) 0 2 (O




Table 5.1.1 (Continued)
a Na | dim V(a) | dim V' (a) | dim V (a) | Splitting Field

(14 + 99) 277 | 1 1 0

(12 + 129) | 288 | 5 (O 3 O 2 (O

17 289 | 1 1 0

(17 + 1) 290 | 5 (1) 1 4 (0)

(13 + 119) | 290 | 2 (0 0 2 (O

(15 + 99) 306 | 1 0 1

(17 + 5i) 314 | 1 1 0

(16 + 8i) 30| 4 (O 2 (O 2 (O

(18) 324 | 1 1 0

(15 + 109) | 325 | 3 (1 2 O 1

(17 + 61) 325 | 1 0 1

(18 + i) 325 | 3 (D 2 (O 1

(18 + 21) 328 | 3 (1) 2 O 1

(13 + 139) | 338 | 2 2 0

(18 + 43) 340 | 2 (D 0 2 (O

(14 + 129) | 360 | 3 (D 1 2 (0

(18 + 61) 360 | 4 (O 2 (O 2 (D

(19) 361 3 1 g

(19 + i) 362 | 2 1 1

(15 + 12i) | 369 | 1 0 1

(17 + 9) 0 [ 3 (D 0 3 (M

(16 + 119) | 377 | 4 3 1 Q(v/2)
(18 + 8i) 388 | 4 (O) 4 (0) 0

(14 + 149) | 392 | 5 (2 5 (2) 0

(15 + 13i) | 394 | 1 0 1

20 400 | 7 (@ 5 (0 2

(17 + 119) | 410 | 2 2 0

(19 + 71) 410 | 2 1 1

(18 + 109) | 424 | & (1) 3 1

(19 + 81 425 | 2 1 1

17 + 12i) | 433 2 0 2 Q(v/2)
@n 441 1 1 0

(19 + 99) 442 | 2 1 1

(18 + 119) | 445 | 2 0 2 Qv3)
(15 + 159) | 450 | 3 (1) 3 M 0
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Table 5.1.1 (Concluded)
3 3 nE ; = . 3 s
a Na dim V(a) dim V (a) dim V (a) Splitting Field
21 + 31) 450 2 1 1
(16 + 141) 452 1 0 1
17 + 131) 458 1 0 1
(21 + 51) 466 2 2 O 0
(18 + 12i) 468 1 0 1
(22) 484 4 (1) 4 (1) 0
(17 + 147) 485 2 2 0 Qv/2)
21 + 7i) 490 2 (O 2 (O 0
(18 + 131) 493 1 0 1
(20 + 10%) 500 3 M 2 O 1
Table 5.1.l1a Dim V((1+i)®) for e < 12
This gives the same information as Table 5.1.1, for a = (1+i)e.

Beyond e = 12

computer time

the spaces V(a) could not be calculated for reasons of

and storage space.

e Na | dim V(a) | dim V' (a) | dim V (a)
8 0 0 0

9| 512 | 4 2 2

10 ] 1024 | 12 W | 6 @ 6 (2
11 | 2048 | 20 (@ | 10 (@ NG))
12 | 4096 | 32 (&) | 16 (@ 16 ()
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V+(a)

in

Rational Newforms

Table 5.1.2
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V_(a)

in

Rational Newforms

Table 5.1.3
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Table 5.1.4
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(Concluded)
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Table 5.1.4a Elliptic Curves over Q(i) with conductor (1+i)e for e < 12

This list is taken from [!? J(note that Stroeker's curves II3, II4, III3,

. sl

and III4 have conductor (1+1)1% and not (1+1) 9 as he asserts). Only one
curve from each isogeny class is listed. There are also 8 isogeny classes
of curves with conductor (1+i)]3 and 12 with conductor (1+i)14. The

symbols used to identify the curves are the ones used by Stroeker.

Symbol a; a, a, a, ag A cM ] Conductor
11 o | o| o |- o | 2° | my | 125 | a+n®
12 o | o | o |1 0o | 2% | mey | 123 | a+n®
X1 T B T B O g 427 27 | (e’
X2 0 | 1-i| 0 |- g 2" | (e’
13 o | o | o |ai o | i2° | menr | 122 | a0
14 o | @ | o |-=3 0 [-i2% | ey | 123 | a0
vl g. 1 a | o e fea et 227 | a+1®
v2 o | i | o |2 s 2273 | +iy 10
111 o | o | o |j o | 2% | ey | 123 | asn'?
112 o | 8| o1 0 {-i2® | men | 123 | asn'?
113 0| @ | o | o | 2° | mn | 123 | an??
114 o | o] o |2 o | 2% | e | 123 | asn'?
1111 0 |1+ | 0 |- 1= |-i2% | e | 20° | a+n'?
o5 0 (N0 | N NO OO O O 1| 27 | | 20° | a+n'?
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Zeta functions

Elliptic Curves over Q(v/-1)

Table 5.1.5

For each isogeny class of curves in the previous table (5.1.4), the

l1on are given

X (for mprime) of the zeta functi

lus at m

first fifteen coefficients a

he Trace of Froben

1s t

a

(Isogenous curves have the same zeta

m
function.)
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(Concluded)

Table 5.1.5
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§5,2 The results of Computations for Q(/—Z)

Table 5.2.1

Table 5.2.2

Table 5.2.3

Table 5.2.4

Table 5.2.5

Ideals a of Z[6] with Na < 300 and dim V(a) > O
s - +

Rational Newforms in V (a)

Rational Newforms in V_(a)

Elliptic Curves with small conductor

Elliptic Curves with small conductor: Zeta Functions
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Table 5.2.1 Ideals a of Z[0] with Na £ 300 and dim V(a) > O

Only one ideal of each conjugate pair is listed. The splitting field is
Q unless otherwise stated. Numbers in parentheses give the dimension of
the appropriate subspace of newforms, when this is less than that of the

whole space.

a Na dim V(a) dim V+(a) dim V—(a) Splitting Field
€49) 32 | 1 1 0
6) 36 | 1 0 1
(3 + 40) 4| 1 0 1
) 49 | 1 0 1
7 + 0) 51 | 1 1 0 |
2 + 50) 55| 2 1 1
8 64 | 2 (O 2 (O 0 |
(8 + 0) 66 | 1 0 1 5
(68) 72| 3 ™ 1 2 (O |
(5 + 50 75 | 1 0 1 |
(8 + 38) g2 | 2 0 2 @ | |
(8 + 40) 9% | 2 (O 2 (D 0 ? ‘
(78) 98 | 3 (D 1 2 O
(9 + 36) 99 | 1 1 0 |
(10 100 | 3 1 2 | Q(/3)
(2 + 70) 102 | 2 (@ 2 () 0 |
(10 + 26) | 108 | 4 (O) 2 (O 2 (O
6 + 68) 108 | 3 D 1 2 () |
4 + 78) el 2 1 1 |
(11) 121 | 2 1 1
(11 + 8) 123 | 3 (D 0 3 M |
(5 + 78) 123 | 2 O 0 2 (O |
(88) 128 | 5 @ 3O 2
(11 + 200 | 129 | 2 0 2
(10 + 480 |-132 | 1 0 1
2 + 80) 132 | 2 (O 0 2 (O
6 + 79) 134 | 1 0 1
(8 + 68) 136 | 1 0 1
(12) 44 | 7 (@ 3 AP
12 +8) -| 146 | 1 0 1
(7 + 70 %7 | 2 0 2 (O




Table 5.2.1 (Continued)
a Na | dim V(a) | dim v'(a) | dim V (a) | Splitting Field

(10 +508) | 150 | 2 (O 0 2 (O

(9 + 66) 153 | 2 (O 2 (O 0

(5 + 89) 153 | 3 (D 2 (D 1

(12 +38) | 162 | 4 (O 2 (O 2 (O

(8 + 78) 162 | 4 (O 2 (O 2 (O

6 + 88) 164 | 4 D 1 3 ()

(2 + 99) 166 | 1 0 1

(13) 169 | 2 0 2 Q(v2)
(3 + 99) 171 | 1 0 1

(4 + 99) 178 | 1 1 0

(8 + 89) 192 | 4 (O 4 (O 0

(12 +58) | 194 | 2 1 1

(14) 19 | 7 (@ 2 (O 5 (2) Q(v/3)
(10 +78) | 198 | 3 D 1 2 (O

6 + 99) 198 | 5 (D 2 (O 3

(108) 200 | 7 (D 3. ()

(14 +28) | 204 | 3 (O 3 (0 0

(2 +108) | 204 | 2 0 2

(12 +68) | 216 | 9 4 (O 5 (1

4 +108) | 216 | 6 (O 3 (0 3 ()

A1+ 78 | 219 | 1 1 0

(15) 225 | 7 (3 1 6 (2

(5+108) | 225 | 3 D 1 2 (O

(14 + 48) | 228 | 4 (0) 2 (O 2 (D

(12 +70) | 242 | 2 1 1

(118) 262 | 4 (D 2 (O 2 (O

(14 +58) | 246 | 4 (OO 0 4 (0

@+ 118 | 246 | 9 1 8 (2

(7 +100) | 249 | 1 1 0

(16) 256 | 11 (3) 6 (2 5 (1)

(16 + 9) 258 | 1 1 0

4+ 118) | 258 | 4 (O 0 L (O

(16 +28) | 264 | 5 (@ 1 4 (D

(8 +108) | 264 | 2 (O 0 2 (O

(13 +78) | 267 | 2 2 0 acv/s)




Table 5.2.1 (Concluded)
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a Na | dim V(a) | dim V'(a) | dim V (a) | Splitting Field

(5 + 118) | 267 | 1 I 0

(14 + 68) | 268 | 2 (0) 0 2 (0)

(12 +80) | 272 | 3 (1) 0 3 (1)

6 + 118) | 278 | 1 0 I

(16 + 40) | 288 | 4 (1) 3 (0) I

(120) 288 | 19 (4) | 13 (&) 6 (0)

(17) 289 5 1 4 Q(V3)
(2 +120) | 292 | 2 (0) 0 2 (0)

(146 +78) | 294 | 9 (3) 2 (0) 7 3

(15 + 68) | 297 | 5 (3) 3 (1) 2

(13 +80) | 297 | 4 2 2

(3+120) | 207 ]| 5 (3) 3 (1) 2

(10 + 108) | 300 | 9 (0) 2 (0) 7 (0)




103

V+(a)

in

Rational Newforms

Z[6]

Table 5.2.2
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Rational Newforms in

Z[06]

Table 5.2.3
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(Continued)

Table 5.2.4
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Zeta Functions

Elliptic Curves over Q(vV-2)

Table 5.2.5

the

Table 5.2.4, we give

isogeny class of curves in

For each
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Ideals a of Z[pJ] with Na < 500 and dim V(a) > 0O

§5.3 The results of Computations for Q(v-3)

Table 5.3.1

Table 5.3.2 Rational Newforms in V+(a)

Table 5.3.3 Rational Newforms in V—(a)

Table 5.3.4 Elliptic Curves with small conductor
Table 5.3.5

Elliptic Curves with small conductor: Zeta Functions
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Table 5.3.1 Ideals a of Z[p] with Na < 500 and dim V{a) > O

Only one ideal of each conjugate pair is listed. The splitting field
is Q unless otherwise stated. Numbers in parentheses give the dimension
of the appropriate subspace of newforms, when this is less than that of

the whole space.

a Na | dim V(a) | dim V' (a) | dim V (a) | Splitting Field
%) 49 | 1 0 1
(8 + o) 73| 1 1 0
(5 + 5p) 75 | 1 1 0
(10 100 | 1 0 1
T A 121 | 2 1 1
(10 + 200 | 124 | 2 1 1
(7 + 70 %7 | 3 M 1 2 (D)
(13) 169 | 1 0 1
(9 + 60) 171 | 2 1 1
(8 + 8p) 192 | 1 1 0
(14) 196 | 3 (D 1 2 (O
(11 +50 | 201 | 1 0 1
10+ 70 | 219 | 2 @ 2 (O 0
(15) 225 | 3 (D 2 (O 1
C14 = 2y - | 228 | 1 1 0
(15 + o) 241 | 2 1 1
(16 + ) 273 | 1 1 0
(11 + 80) | 273 | 1 1 0
(13 + 6p) | 283 | 1 1 0
17 289 | 2 1 1
(16 +20) | 292 | 2 (O 2 (O 0
(10 + 100 | 300 | 5 3 (D 2 (O
(18) 326 | 2 1 1
(15 + 500 | 325 | 1 0 1
6 + 700 | 343 | 3 (D 1 2
(19 361 | 3 1 2 Q(/33)
(11 +1p) | 363 | 5 D 3 M 2 (D
(14 + 80) | 372 | 4 (O 2 O 2 (O
(15 + 700 | 379 | 1 1 0
(17 + 500 | 399 | 1 1 0
(13 + 100) | 399 | 2 0 2
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Table 5.3.1 (Concluded)
Na | dim V(a) | dim V' (a) | dim V (a) | Splitting Field

(20) 400 | 3 (D 1 2 (0

18 + 4p) | 412 | 1 1 0

(16 + 7p) | 417 | 2 1 1

(18 + 500 | 439 | 1 0 1

@1 41 | 7 @ |.3 M 4 (D

(13 + 120) | 469 | 2 0 2 Q(/13)
(15 + 100) | 475 | 2 1 1

(16 + 90) | 481 | 3 1 2 Q(v/6)
22) 484 | 5 (1) 2 (0 3

(17 + 80) | 489 | 1 0 1

(20 + 4p) | 496 | 4 (O 2 (O ()
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Elliptic Curves over Q(v/-3) with small conductor

Table 5.3.4
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(Concluded)
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(Concluded)

Table 5.3.5
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Ideals a of Z[}(1+/-7)] with Na < 200 and dim V(a) > 0

§5.4 The Results of Computations for Q(V-7)

Table 5.4.1

Table 5.4.2 Rational Newforms in V+(a)

Table 5.4.3 Rational Newforms in V_(a)

Table 5.4.4 Elliptic Curves with small conductor
Table 5.4.5

Elliptic Curves with small conductor: Zeta Functions
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Table 5.4.1 Ideals a of Z[1(1 + v~-7)] with Na < 200 and dim V(a) > 0

Only one ideal of each conjugate pair is listed. The splitting field
is Q unless otherwise stated. Numbers in parentheses give the dimension
of the appropriate subspace of newforms, when this is less than that of

the whole space.

a Na | dim V(a) | dim V' (a) | dim V (a) | Splitting Field

(5 25 | 1 0 1

=2 & 4g) 28 | 1 1 0

6 36 | 1 0 1

(2 + 4o 4h | 1 1 0

(-1 + 50) 46 | 1 1 0

(50) 50 | 2 (D) 0 ()
6 + 20) 56 | 2 (O) 2 (O 0

(-3 + 6a) 63 | 1 1 0

(8 64 | 1 0 1
(6o 72 2 (@ 0 2 (D
1+ 6a) 79 | 1 0 1

4 + 50 86 | 1 1 0

(-3 + 70) 8 | 1 1 0

(8 + 2w 88 | 2 (O NC) 0

(7 + 3w 88 | 1 1 0

2 + 6w 88 | 3 (D 3 M 0

(-2 + 70) 88 | 1 1 0
9+ 92 | 2 (O 2 O 0

6 + 4a) 92 { 2 () 0

10 00 | 5 D 0 5 (1)
(5 + 5 00 | 3 (O 0 3 ()
(8 + 3 106 | 1 0 1

4 + 60) 112 | & D 3 1

(-6 + 8 | 112 | &4 (O L (O 0

(2 + 7 116 | 1 0 1

(-2 + 8 | 116 | 1 0 1

an 121 | 3 1 2 Q1T
(9 + 3w 126 | 2 (® 2 0

(80) 128 | 3 D 1 )
(12 144 | 5 D 0 5 (1)
6 + 6a) 144 | & (D 0 4 D




Table 5.4.1 (concluded)
a Na | dim V(a) | dim V' (a) | dim V (a) | Splitting Field
(8 + 51 154 | 1 0 1
(-1 + 90 154 | 1 0 1
(12 + o) 158 | 3 (1) 1 2 (O
(5 + 7a) 158 | 2 (0) 0 2 (O
(3 + 8w 161 1 1 0
(7 + 60) 163 | 1 0 1
13) 169 5 0 5 Q(v/3) ,Q(x3+4x%-2)
T (11 + 30 172 | 2 (O 2- (O 0
(10 + 4 172 | 4 (0) AN () 0
(1 + 9w 172 | 2 1o 2 (O 0
(-5 +100) | 175 | 5 (3 3 2 (O Q, (/17
(12 + 2a) 176 | 8 (1) 7O 1
(9 + 50 176 | 3 (1) 2 (O 1
(6 + 70) 176 | 3 (1 2 (O 1
(4 + 8w 176 | 6 (O) 6 (O 0
(-4 + 100) | 176 | 5 (O 5 (0) 0
(8 + 6a) 184 | 4 (1) 3 (O 1
(2 + 9 184 | 3 (0) 3 (O 0
(-2 + 100) | 184 | 6 (2) 5 (1) 1
(14) 196 | 5 (3) 3 M 2
(3 + 9 198 | 1 0 1
(10 + 50) 200 | 5 (D 1 4 (0)
(100 200 | 8 (O 0 8 (O
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V+(a)

in

Rational Newforms

ZLi(1 + v-7)]

Table 5.4.2

2 9- 8- ¢ 6 + Y¥- 8- L= &= L- ¥ Z- + 002 (0G+01)
Z ¢ 0L ol I Z && ¥= = g= & W= = = = 961 1)
8 ¥- 2 [4 0 9 ¥ + 0 0 9 A = + %81 (™0L+2-)
oL- OL- Z I ¢ ¢ - 9~ 9- G- &= G- - 0 0 G/l ™0L-9)
8 L- & L= € 9= I- + ¢ 9 g£- Y o 0 0 oL (08+¢)
(09-2) + 8- Z Y oL - g &= 8= L% 9= L- = 2= + 861 (0+21)
= % O0lL- 0L- ¢ 2¢- l 0 0 VA A é 0 = + 8¢l (08)
9= 9= ¢ ¢ 0 0 6~ L- L- ~ = G- g= 8T, eF L2l L)
Yy ¥ 2= 9 0l- ¢ 9- 0 8 ki + [4 0 L- - 88 (®2+2-)
- = - ¢ 9- 9 o 0 0 + - 9= Y [ - + 88 (09+2)
- 7 e G e 9 9- 0 8- 0 . ue= ki = l 88 Mg+l)
i 0 ¢ 9. &~ 9= - 0 0 /R ¢ = l 98 (0L+¢-)
= 8 4=, &~ 9= 9 = &= 9= ¢ ¢ Y/ L= 0 i 98 (0G+Y)
= H= 9 9 2= & 9= 0 0 Y K - + L- L= €9 (09+¢-)
Y- ki 9 <& 2= 9 Z + 8 4= y= I 0 = L-. 9% (OG+1-)
- - 0l- I 9 9 4 0 0 0 + 2= 9= = + KA (P942)
8 8 Z 2 9- 9- 0L- 0 0 0 0 ¢ - + + 8¢ (OY+2-)
M 12430 2=/ 024G VY=G Vh4| OYy—¢ OY4|- G 02-G V2+¢ 02-¢ ©2+L ¢ ©2-l ®-] © EN e




y 8- 2- 9- 9- 2- 2 8- y + 0 - 0 - 1- 861 (P6+S)
8- 8- 2- 2- 9- 9- o0l 0 0 0 0 2 + + + 961 1)
2- 2- 0L- 0lL- 2 2 2 9= - 2= 2- Y + - - 961 L)
0 %= 9- 0l vy 9- 8 - 8- 0 z- 0 4 + - %8l | (P0L+2-)
0 2L- oL- 9- v 0l 0 % - Y 0 Y 0 2 + - ¥81 (0948)
b Y- 4= 2 2= 9- 2 9- 8- 0 - 0 2 Yy - + 9.1 (02+9)
B y- - 9 2- 2 0L 9- 8- 0 +  y- 2- 0 - l 9.1 (0G+6)
2 2Ll- 21 2- 9- 2 0l 2 8- 0 0 + 2 y + - 91 (0Z+21)
,m (09+)) - 6- 9 ¢- 9 4 1- 8- S y- 2- v g- ¢ L 2- c91L (09+/)
2 - 2=~ 2- 0l- 9- 2 9- 8 0 ¥- +  2- - + l V9 (06+1-)
m Y- g. 12 9 oL 9- 2- ¥ Y- B = 2 - 1= + viq} (0G+8)
m y- 2l- 2- 2- 9- 2= 2- 4= 4= 4= Y - Vi = - vad' (09+9)
S b y= %= 9=  9- 0l- O0OL- 9 9- 9- 2 2 + 0 + - vad! @
= 2L ¥ 0lL- 2- O0l- - 9= %= Y 0 4- 2 0 - + 9Ll (08+2-)
W__/, 8- 9- 0L 9- - 9 9- 9 9- 0 2 z2- 2 - - 9Ll (0242)
+ Y- 4= 9 2- 2 9- 9- 8- 0 Y v 2- + + + 2LL (09+¥%)
= (Oy-2) + - 0 OL oL- 2 2 2- 8- y 0 - Z 0o I- + 901 (0$+8)
e ¥- ¥- 0L 0L 9- 9- SR E S T 2 2 0 - - | ool L)
o (09+1) - 9 0 9- 0 S 8 L - % 2= s- ¢ ¢g- I 2- 6. (09+1)
< Y Y 0L- OlL- 2 2 2 0 0 ¥ 4= 2- 0 + + %9 (8)
,“ Y- 4= 9 9 2 2 9- 0 0 Y- ¥~ + 0 + + 9¢ 9
m 9 9 0 0 - - + h- - l I ¢- 0 2- 2- G2 (9
EH
M 19430 | ©2-) 0Z+G V-G V44| Oy-¢ Oy4|- G W0g-G O2+g Vg-¢ ©2+] ¢ 02—l ©-| © eN e




74" b L2l LL- 0 0 L L- 0 2l
H 88 (02-2) 9260% 0GLL-9%71 -1 0= 0- 0 0-
- 88 (02-2) 79211 0Ge-8.- 0 l 0 0+]- [l 1
m H 88 09+2) 8%%S1 08+021 V+l-  [02+&- 0 0+1- 0+]-
,m 88 (09+2) %22081 0Y9-8%Y 0 0+ - 0-1 0 -1 [0l
S 88 (0g+2) 706221 | OS6L+LEE- L 0 0+L- 0 O+l- |6
m 98 02-2) 98 0l-¢  [2+e-  [oZ-L- L 0- l
5 98 ®L-¢) 889 0LL+G l 042 0 0+l l
.mm. 98 (02-¢) 9622 ©.+68~- L- 0- l 0-¢ l 8
W 98 0G+Y) 951 0/LL+8¢- 0 L= l 0=-2 | O+l=- |2
./_/; H 9 (09-¢) 696¢ £9- 0 l 0 0 l
51 €9 ©9-) €9 0945~ 0 o | p- | 0-l Lo
S m 6% ) mmpl (L)WI 699211 £ye= L- 2= 0 L- l S
- * H 9y ®s-1) 7948 V6L+62 0 0 O+l- O+]- 0
m 9% ©G-1) _ 888¢S 0eh-¢2 L | o+2- 0= 0= l Y
S H KA ®%+2) 706521 OH%1-89¢ 0-¢ 0-2 0- l l
m 7Y ®Y+2) %2081 09Le-%8 l L 0 0=l L ¢
.m. H 8¢ ©%=2) %ee 0oL+e 0 l O+]- 0 A
= 8¢ Ry 782 8¢- 0 L= L 0 l Z
. 91 ©e-2) MmT (LW 960% 0GY+9Y- 0-1 0e-¢ 0 -2 0 L
!
w saTuadosy | JN ’ [ 2 WO VN v %% g te ‘e le #
=
= *{g5hs7- “TsXsSE-i0L4x} 3 I e S{15L%s[-104+x} 3 Te 10010} 2 Epele :uor391 yoaiesg




128

(Concluded)

Table 5.4.4

*(#1) :1o03onpuod JursSSTH

00¢ (0S+01) 00%9 0GL-02- 0 rl 0- -1 0 8l
H 81 (P0L-2) 82691 086-8¢ 0 14 D=, 0 0-]

81 ¢0L-2) 266¢%e ©9L1L-09 0- 0-2 0-} ©-2 o-1 | 2L

G2l (™0L-9) Ggécl Ge- 0 L= l l 0 9l

L9l (08+¢) L9l 0g-¢- L- 0- A V=2 0 Gl

8¢l (™+21) 7921 0glL-8l- 0 O] - l 0~ O-1 | ¥l

8¢l (08) 89/¢2¢ 0ZLL+8Y O+] 0-2~ 0 0 0

8¢l (08) 89/.2¢ 02LL-091 0+~ | V2+h- 0 Otl- 0

821 M8) 91292 09G2+21S- 0 V== 0 N= 0

821 03) 791292 09G2-952- 0 042~ 0 0-1 0 ¢l

satuagos] IN J % WO VN v % e te [ le




129

¢ Zeta Functions

Curves over Q(v/-7)

iptic

Ell

[T
<
[Te)

]
—
e

3]
EH

he Trace of

, We give t

Table 5.4.4

in

lass of curves

1sogeny c

For each

Frobenius at each of the first fifteen primes.

2 9- 8- e 6. - Y% 8- b= g= - - 2- 0 00¢ (0S+01) 8l
8 ¥- 4 Z 0 9 Y- L- 0 0 9 ooy 0 L- 81 (P0L-2) ll
0L- O0L- 4 é ¢ ¢ it 9- 9- ¢- ¢ g- 2 0 0 P ®0L-9) 9l
8 L- ¢ 2F £ 9- L- L= ¢ 9 &= ks l 0 0 Lol (0g8+¢) Gl
8- r Y 0oL 9 2 &= g I & 9- L- - 2- L- 861 ™+21) va’
= ¥ 0lL- 0lL- ¢- 2- 4 0 0 Y Y- e 0 0 0 821 (©8) ¢l
9= 9= 13 ¢ 0 0 6- L= L- L I & 2- 2- 2- L2l (b Zl
y - 2- 9 0L- 2- 9- 0 8 ¥/ L= 4 0 L- 0 88 (0Ll=2) Li
= T = ¢ - 9= 9 e 0 0 - 9- ki 4 0 L- 88 (09+2) oL
7= Y 2= ¢ - 9 . 9= 0 8- 0 b= 1= ki 0 l 88 (Pg+)) 6
L= 0 e- Q&= 9= g= 0 0 v oy 2 Y- L L 98 (V) 8
L g2 L= 1= 9= 9 - ¢ 9- 13 3 ki L- 0 L- 98 (VG+Y) P
- Y- 9 9. &= @ 9= 0 0 ¥/ ki L L- L- L= €9 (09=¢) 9
¢l- 2L- 9- 9- 4 Z 0l- 8 8 K4 Y 9- 0 L l 6% 2) S
- Y 9 2= 2~ 9 [4 - 8- 9 - é 0 L L= 9% (0g-1) ¥
= 9= 0l- 14 9 9 14 0 0 0 . 2 % l L= Y (0%+2) ¢
8 8 14 < 9= 9= 0L~ 0 0 0 0 z- l L- L= 8¢ =23 c
2l- 21 9 9 ¢~ 2~ -0 8. B - % 9= 0 L- 0 9l (Ve=2) L
DZ-1 024G VY-G Dh+| OY-¢ Oh4l- ¢ 0Z-G 0Z+§ VZ-¢ 0Z+| ¢ =L w=-f ® N 3 #




Ideals a of Z[4(1+/-11)] with Na < 200 and dim V(a) > O

§5.5 The Results of Computations for Q(/~11)

Table 5.5.1

Table 5.5.2 Rational Newforms in V+(a)

Table 5.5.3 Rational Newforms in V—(a)

Table 5.5.4 Elliptic Curves with small conductor
Table 5.5.5

Elliptic Curves with small conductor: Zeta Functions



Table 5.5.1 Ideals a of Z[4{(1 + v-11)] with Na < 200 and dim V(a) > 0

Only one ideal of each conjugate pair is listed. The splitting field
is Q unless otherwise stated. Numbers in parentheses give the dimension
of the appropriate space of newforms, when this is less than that of the

whole space.

a Na | dim V(a) | dim V' (a) | dim V (a) | Splitting Field
(3 9| 1 0 1
(-1 + 20 11| 1 1 0
(5 25 | 1 0 1
(30) 57 |3 o 1 2 (O
(5 + ) 33| 2 (O () 0
6) 36| 3 (D 0 3 (M
(-2 + 4a) 4 | 2 @ 2 (O 0
(3 + 30) 45 | 2 (O 0 2 (O
(5 + 20) 7l 1 1 0
7 49 3 0 3 Q(x3+x2-8x~4)
(4 + 30) 55 | 2 (O 2 (O 0
(8 66 | 1 0 1
(-2 + 50) 69 | 2 0 2
(-1 + 5q) 7| 2 0 2 Q(Y/5)
(7 + 2 75 | 2 0 2
(50) 75| 2 0 2 (O
9 81| 9 4 (O 5 (1)
6 + 30) 81| 5 (O 2 (O 3 (0
@ +55 89 | 2 1 1
(8 + 2a) 92 | 1 1 0
(3 + 50) 99 | 6 (3 b1 2
(-3 + 6a) 99 | 7 D 5 (1) 2 (O
(10 100 | 5 (3 0 5 (3)
6 + 4o 108 | 4 2 2
(60) 08| 9 D 3 6 (O
(9 + 20) T 2 2 Q¢/5),a(/5)
a1 121 | 5 (3 3 M 2
(5 + 50) 125 | 3 (D 0 3 M
10 + 200 | 132 | 4 (O 4 O 0
(9 + 30) 135 | 6 (O 2 (O 4 (0
(3 + 60) 135 | 8 () 3 M 5 (1)




Table 5.5.1 (Concluded)
a Na | dim V(a) | dim V' (a) | dim V (a) | Splitting Field
6 + 5a) 141 3 (D 2 D 1
(-1 + 70 141 2 (O 2 O 0
(12) 144 | 5 (0) 0 5 (O
(7o) 147 | 6 (0 0 6 (O
(9 + 4o) 165 | 5 (1) AN (1)) 1
(2 + 7o) 165 | 8 (4) 7 1 Q(/5)
(13 169 | 5 0 5 Qlx3-x"*=11x3+7x2
(-4 + 8 176 | & (D 4 (1) 0 H17x+7)
(3 + 70) 177 | 1 1 0
6 + 60) 180 | 7 (1) 1 6 (O
(-1 + 8 185 | 3 3 0 Qlx3-4x-2)
(10 + 4a) 188 | 2 (O 2 (O 0
(80) 192 | 2 (0O 0 2 - (D
(14) 196 | 9 (3 1 8 (2 Q(v3)
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Table 5.5.3
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85.6 Some comments on the results in the tables

Consider the tables of results for Q(v~1), recorded in the tables in
85.1.  They support the following claim.
Claim A (i) For every newform in V+(a) there corresponds an isogeny
class of elliptic curves defined over Q(v~1) with conductor a;
(ii) For primes p not dividing a, the Trace of Frobenius of the curve
at p is equal to the eigenvalue of Tp acting on the space generated by
the newform;
(iii) For primes p dividing a: if p? divides a then the Trace of
Frobenius of the curve at p is 0, otherwise {(if p divides a exactly) it is
minus the corresponding eigenvalue of Wp;
(iv)  Every elliptic curve defined over Q(v~1) corresponds to a newform
in V+(a) in this way, where a is the conductor of the curve, except when

the curve has complex multiplication by an order in Q(v~1).

Parts (i), (i1i) and (iii) of Claim A also hold for the other four
fields, as one can verify by inspecting the appropriate tables. We are
unable to prove ﬁhem, however. Part (iv) has an obvious analogue for
the other four fields: curves defined over K with complex multiplication
by an order in K do not correspond to cusp forms. The reason for this
is that the zeta function of such a curve is known to be a Hecke L-series
with Grossencharacter; one can attach automorphic forms to such objects,
but they are not cusp forms. (c.f. [7 ] Theorem 2(b).)

The main motivation for the work which went into the computations,
the results of which are recorded in §5.1 - §5.5 was to be able to state
precisely a conjecture relating automorphic forms for congruence subgroups
of GL(2,K) with elliptic curves defined over K. That such a connection
exists is suggested not only by the well known results for the case when
the ground field is Q, but also by the general philosophy relating

automorphic forms to L-series which satisfy a functional equation, via



a generalization of the Mellin transform. However, although this very

general approach certainly predicts a connection between elliptic curves
defined over a complex quadratic field and the cusp forms of weight 2
discussed in Chapter 3, it is hard to extract from it the precise

nature of the connection. We hope that our claim does this to some
extent.

In [11] and [12], Mennicke and Grunewald also discuss this question.
Their computations of newforms at prime level give some evidence for
Claim A, and they also remark that, as in part (iv) of the claim, one
would not expect a cusp form to correspond to an elliptic curve with
complex multiplication by the ground field K. They also suggest that
in certain cases a newform may exist in V+(a) for some ideal a without
a corresponding curve of conductor a, but our results do not seem to
support this: however, it is possible that the situation at a low level
is not typical. Of course, it would be desirable to have a procedure
for constructing an elliptic curve directly from a newform f(z), as
Tingley did in the rational case by means of calculating the periods
of the differential 2mif(z); but all efforts in this direction have so
far been unsuccessful. Recall that in the rational case, XN(C) has, as
well as a complex structure, an algebraic structure as an algebraic
curve Xo(N), and that elliptic curves arise as one-dimensional factors
of the Jacobian Jo(N). By contrast we have (apparently) no complex
or algebraic structure on Ao(a)\H: by means of which to generalize this
construction. We have tried calculating the periods of the differential
corresponding to a newform, integrated around a corresponding pair of
cycles in V+ and V—, for some of the newforms of §5.1: but the numbers
which result have no obvious interpretation in terms of the expected
elliptic curve. The results of these integrations are recorded in the
last section of this Chapter.

. : . . v + 5
According to claim A, it is only the newforms in V (a) which are
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related to elliptic curves. However, there is a connection between
V+ and V . We state this first as a second claim, for the case K = Q(v/~1).
Claim B There is a one-one correspondance between newforms in 'l and
newforms in V_, not necessarily at the same level: if the levels are a

1

a. n (1+i)4.

and a, resectively, then either a, =a, N (1+i)4 or a, = a3,

2

To make the correspondance in Claim B clearer we give some examples.
There is a newform in V+((6+6i)) which grows into two oldforms in V+((12));
in V_((12)) there is a newform. These two newforms have the same
eigenvalue for TTr if T =1 (mod 2), and hence eigenvalues of opposite
sign for T1T if T =i (mod 2), by (3.3.6). Note that (12) = (6+61) fi (1+i)?
In the other direction, there is a newform in V ((8+2i)), which grows into
two oldforms in V—((10+6i)) and three Eldforms in V ((16+41)); now
(16+4i) = (8+2i) A (14i)4, and there is a newform in V+((16+4i)) whose
eigenvalues correspond as before.

One other example: Mennicke in [ 11] observed that there is a newform
in V ((11+#4i)), but (apparently) no elliptic curve with conductor (11+4i).
Hawinig Palenlater Vo0a) Eor A= (L8001 18R esyy (=02,
(11+41)(1+i)3 and (11+4i)(1+i)4, we eventually find, as well as five
oldforms in V—((11+4i)(1+i)4), a newform in V+((11+4i)(1+i)4) as
predicted by Claim B. Moreover there is an elliptic curve with conductor
(11+4i)(1+i)4 (which Mennicke had found), whose Traces of Frobenius
correspond as in Claim A.

We can rephrase Claim B as follows.

Theorem Let a be an ideal of 1[i] such that (1+i)4 divides a. Then
there is a map R2 : V(a) - V(a) suck that
. RJ = - .
(1) 2J / iRz,
i m . v . .
(ii) RZTTr = 5<§”R2 if m is prime, (m) =z (1+1i), and (m) 1 a;
(iii) RW = ng R, if T is prime, (m = (1+i), and (M | a.

2T
Here (g) denotes the quadratic character modulo (2): it is +1 if m = 1
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(mod 2), and -1 if m = i (mod 2). It follows from (i) that R, maps

2
V+(a) into V—(a) and vice versa; then from (ii) and (iii) it follows
that R2 preserves the eigenvalue of T1T and W1T provided that ™ =1 (mod 2).
Note that every prime ideal of Z[i] has four generators, of which two
are congruent éo 1 and two congruent to i (mod 2). So we can always

choose a generator in such a way that R, preserves eigenvalues. This

2
was done in the Tables of 8§5.1 in order to make the correspondence
between newforms in V' and V. more striking.
This Theorem will be proved in the next chapter as an application of
a more general result. The map R2 is a special case of a whole class
of 'twisting operators, one for each ideal q of Z[i], which acts on V(3a)
provided that q? divides a (here q is either (2) or an odd prime of Z[i]).
Similarly, for the other four fields, these twisting operators can be
defined whenever the 'square of the twist' divides the level. Other
examples in the Tables: for Q(/~2) there are examples of (l+6)-twists,
for example at level (2+56) where there are corresponding newforms
simultaneously in V' oand vV (note that (1+9)2 divides (2+56)). There are
(2)-twists at level (12), and (4)-twists at level (16). For Q(v~3) the
twists visible in the tables are the (I+p)-twist, at level (15) for
example, and a (2+ P -twist at level (14+7p). In general, a O-twist
will preserve or reverse the J eigenvalue according as € is or is not a
square modulo q, where € generates the unit group q’: of OK'
Twisting operators will be developed and studied more systematically
and in detail in the next Chapter: their existence and basic properties
are readily suggested by the tabies of results above. As a matter of

. 3 5 + = .
history, the map R, which interchanges V (& and V (a), provided that (4)

2
divides a,was discovered by the author as a means of proving Claim B. It
was only later, while trying to extend the result to other fields, that

the twisting operators of Atkin-Lehner were remembered; and then it

became a straightforward matter of generalizing the results of Atkin and
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Lehner in the last section of [ 3] to produce a general theory of twisting

operators, as developed in the next Chapter.

§5.7 Some Calculations of Periods

We refer to Section 3.5, and in particular to formula (3.5.3). For a
few selected newforms for Ay,(a), where a is an ideal of Z[i], we have
carried out the following computations: first we determine an element g of
Ag(a) such that the imége of the path {w,gw} in Hl(Ao(a)\Hz,Q) generates
the corresponding eigenspace. Of the possible choices for g we find one
with lower left-hand eﬁtry as small as possible, for reasons of convergence
as explained in §3.5. Then we calculate a large number of Hecke
eigenvalues for the newform: in practice we computed the eigenvalue
of TTr for all primes T with norm less than 500. Next we calculate the
coefficients c(&) of the newform, for § ¢ Z[i], given the multiplicativity
and recurrence relations of §3.3: for powers of primes which do not
divide a we use (3.3.9)(i) and (ii); if 7 divides a but T2 does not, we
set c¢(m to be minus the eigenvalue of Wﬂ, and c(ﬂr) = c(ﬂ)r; and if
7% divides a we set C(ﬂr) =0 forr = 1.

Now we can substitute in (3.5.3). We used a numerical (polynomial)

approximation to evaluate K, (c.f. [ 1] §9.8). To save time, we

1
calculated together the four terms corresponding to associate integers

€: note that in (3.5.3) the only factor, apart from c(&), which depends

on £ itself rather than just |g| is W(n_lag) = exp(-m (0 + af) (since

the different n is 2 here). Denote by ZE(f;Y) the expression on the right
hand side of (3.5.3) with the sum restricted to those & ¢ Z[i] with

€ = € (mod (2+21)), for e =1, i, -1 and -1i. Then clearly

T =12 and I. =% .,
1 -1 i -1

since Y(-z) = Y(z).

Example 1 a = (12+41)

Nl o . .
Here (1+i) " divides a so that the (2)-twist operates: there is a



+ = s .
newform in each of V. and V , with corresponding eigenvalues (equal for

T =1 (mod 2), opposite for m = i (mod 2)). V+((12+4i)) is generated by

M-symbol (3+2i:1) which corresponds to a path {P,Y+P} for any point P, with

_ 7-2i 1
Yo T |2(12+4i) 3+2i
Secondly, V ((12+4i)) is generated by M-symbol (3i:1) corresponding to
{P,Y_P} for
- TR 4+i 1
- i(12+41) 31

+ T ; + -
Let F be the form with coefficients from the eigenvalues of V , and F the

form from V . Then

i

.
1(F',y+) ~ 5.28m(1+i)//(160), and

5.28m(1+i)//(160), while

Q

Z(F,Y,)
2 (F,y) ~ 5.28m(~1+1)//(160), and
Zi(F+,Y_) ~ 5.28m(1+i)//(160).

Example 2 a = (l+i)9

a) There is a pair of newforms in V' and V_ corresponding to the curve
IX2 of 85.1. Setting F to be the newform in S+ we have calculated
Z](F,Y+) ~ (7.06 + 10.021i)7/8v2,
L (F,y,) =~ (7.06 - 2.77i)m/8v2,
ZI(F,Y_) ~ (7.05 + 10.00i)m/8v2,
and L (F,y)) = (-7.05 - 11.331)m/8v2.
b) There is also a pair of newforms in V' oand V. corresponding to the
curve IX1 of §5.1. Setting F to be the corresponding newform in S+, we

have

-4

Z](F,Y+) ~ (-0.00 + 2.97i)7w/8v2,

Zi(F,Y+) ~ (-0.01 + 9.84i)7/8/2,
Z,(F,y)) ~ (0.00 - 8.07i)m/8v2,
and Zi(F,Y_) ~ (-0.00 - 9.841)T/8V2.



= (16+41)

Example 3 3] = (8+21), a

2

There is a newform F., in V_((8+2i)) whose (2)-twist is a newform F

1

in V+((I6+4i)). Denote the corresponding cycles by Yy_ and Y,
ZI(FI,Y_) ~ (-4.82 + 3.09i)7m/2/68,
Zi(Fl,Y_) ~ (3.66 - 0.41i)m/2/68,
ZI(FZ,Y+) ~ (8.48 + 1.171)7/2v68,

and Zi(Fz,Y+) ~ (8.48 + 8.48i)m/2v68.

2

We have



CHAPTER 6

Twisting Operators

In this Chapter, we define certain operators on the spaces S(a) of
cusp forms for A¢g(a) defined in Chapter 3. Most generally, whenever
we have an ideal b with a 'quadratic' character X :(OK/b)>< > { + 1},
then we will be able to define an operator RX on S(a) provided that
b* divides a. Under suitable conditions, such RX will interchange the
two eigenspaces for the main involution J; their effect on Hecke and
- W eigenspaces will be determined; and in certain cases the twisting
operators will enable us to construct newforms from oldforms. The
motivation of this work was to prove Claim B of 85.6, by finding an
explicit connection between V+ and V. over Q(i): newforms in vV did
not seem to correspond to elliptic curves directly, but there was
always a related newform in V+, poséibly at a different level, which did
have a corresponding elliptic curve.

These twisting operators are discussed fully in the rational case by
Atkin and Lehner in Section 6 of [ 31. The characters X which are used
there are either the quadratic character modulo an odd prime q, or the
characters modulo 4 and 8. In order to determine all quadratic
characters for a complex quadratic field K we have to determine the
structure of (OK/b)X for an arbitrary ideal b of OK' This will be done
in the first section. In the second section, the twisting operators
will be defined and their properties developed. In the third section,
we will prove a result, analogous to Atkin-Lehner's Theorem 6 for cusp
forms over Q, showing how certain newforms arise as twists of sldforms.
Lastly, in the fourth section, we illustrate, with examples taken from
the results of Chapter 5, how the connection between the V+ and V_

spaces of newforms arises by means of certain twists.
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§6.1 Quadratic Characters of O_

By a quadratic character of 0K we will mean a surjective homomorphism
i B (OK/b)X > {z1}

extended to OK as follows: for x ¢ OK’ relatively prime to the ideal b,
set x(x) equal te ¥(x), where x is the reduction of x modulo b; otherwise
set x{x) = 0. The largest ideal b modulo which Y is defined (that is,
the ideal of smallest norm) will be called the conductor of X

It is clear that, in order to determine all such characters, it
suffices to determine the characters modulo prime powers, since an
arbitrary quadratic character will be a product of these, in the obvious
way, by the Chinese Remainder Theorem. For powers of an odd prime p
(that is, one not containing the number 2), this is achieved by the
following lemma.
Lemma 6.1.1 If p is an odd prime ideal of OK' there are no quadratic
characters with conductor pe unless e = 1; there is a unique character
with conductor p given by the quadratic residue symbol.
Proof: (OK/pe)x= G1 X G2 where G] has order N(p)e—1 (which is odd)
and consists of the residues modulo pe which are congruent to | modulo
p; while G2 maps isomorphically onto (OK/p)>< under reduction modulo p,
so is cyclic of order N(p)-1, being the multiplicative group of the
finite field OK/p. A quadratic character must clearly be trivial on

Gl’ while on G, its kernel must be the (unique) subgroup of index 2,

2
namely the subgroup of squares.
For even primes the situation is more complicated. We need to

; X 3
determine the structure of (OK/pe) where p divides (2).

Case 1: Z[i] Here the unique prime dividing (2) is (1+i).

Proposition 6.1.2 If k < 3 then (Z[i]/(1+i)k)X is cyclic of order Zk_l,

generated by 1i. If k 2 3 then
(z[i]/(1+i)k)>< ® <i> X <5> X <=1+42i>

where



(1) i has order 4;

2n is even, then 5 has order ZH_2 and -1+2i has order 2n_];

2n-1 is odd, then 5 and -1+2i both have order 2n—1.

(ii) .if k

(iii) if k

Proof: This is a fairly straightforward matter of verifying that the
elements given have the orders stated, and that the subgroups they
generate have trivial intersection.

From the proposition, it follows that there are essentially three

: : v KO
quadratic characters with conductor (1+i) for some k:

-1 if x =1 (mod 2);

k=2 X (x)

+1 if x =1 (mod 2).

k =4 Xz(x) =+]1 if x = 41, # (mod 4);
-1 if x = #1+2i, 24 (mod 4).

k=5 X3(x) = +1 if x = #l,+1, +(1-2i),+ (2+i) (mod 4+4i);
-1 otherwise.

" Ofcourse, X %o is another character with conductor (1+i)4, and X X3?
X X3 and X Yo X3 are other characters with conductor (1+i)5.

Characters X and X3 are related to quadratic residues, in the
following way. First note that both % and X3 have value +1 at i, so
they can be defined on ideals of Z[i] as well as on elements. It turns

out that, for an odd prime p of Z[i],

AY_ (2)

(i) (p =
= . (a)
(i1) y(p = = where as usual the symbol [2)is +1 if g is a
. \p/ \p/
square modulo p, and -1 otherwise. This is analogous to the situation

in 2z, where the unique quadratic character of conductor 4 is p - =1\

while the quadratic characters of conductor 8 are p - %) and p- ! _—p}
For the sake of brevity we do not describe all the quadratic

characters of even prime power conductor for the other Euclidean fields,

but just give the characters of smallest conductor.

Case 2: 72[y~2] As usual, we set §= ,2; the unique prime dividing

(2) is (9. There is a character X of conductor () 2 = (2), namely:



X,(x) =+1 1if x = 1 (mod 2);
1
-1 4if x = 1+6 (mod 2).
Since XI(_I) = 1, we may define X, on ideals of Z[6]. A simple check

shows that for an odd prime ideal p,
-1) (2)
() = = =
>3<1 \p/) = \p/
Also, Z[06]/(8)7 = <=1> x <1+0>, aKtein four-group. So there is a
character X9 with kernel <1+6>, and XXy has kernel <-1-6>. There is

also a character X3 with conductor (9)5 such that X3(—l) = 1 and X3(D) =

(8

—) for odd primes p.
\p/ B

Case 3: Z[pl, p = L(1+/-3) Write R = Z[p] for short. The ideal (2)

X

is prime in R, so that (R/(2)) 1is cyclic of order 3, generated by p;

so there are no quadratic characters with conductor (2). However,
2%
(R/(2)7) = <p> x <1+2p>

where p has order 6 and 1+2p has order 2; so there are three quadratic
characters with conductor (2)2: X) with kernel <p>; Xy with kernel
< 2> 2 = -

p™> x <1+2p>; and X, = X;X,

Notice that since X4 is trivial on the units of R, it can be defined

on ideals of R: in fact we have, for an odd prime ideal p:

=i
we = (5 - ()

[ Proof: The second #mequality holds trivially since -p is a square in R.
Also, (%) = 1 if and only if R/p has an element of order 12, which is if
and only if Np = 1 (mod 12). This is true for an inert prime p, if p hes
the form (p) with p € Z and p = -1 (mod 3), and these are in the kernel
of Xy For split primes p, of the form (a+bp), with Np = a’+ab+b? = p

= 1 (mod 3), a simple check shows that p = 1 (mod 4) if and only if a+bp

is in the kernel of X;+ ]

Case 4: 2[al, o= $(1+/-7) 1In this case (2) splits into two distinct

prime ideals: (2) = (a)(a). We have

Lal/ s = /(% = zel/@E.



From our knowledge of quadratic characters of Z modulo a power of 2, we

deduce that:
(1) There is a character X] modulo (a)z, namely Xl(l) = [, X](—l) = -1;
similarly there is a character?1 modulo (&)2.
(ii) There are two characters modulo (a)3: first, Xp» defined by xz(l) =
XZ(—I) =1, X2(3) = XZ(_3) = -1; and then X3 = XZXI' Similarly, there
are characters ié and ié modulo 65)3.
(iii) There are no more characters modulo powers of (o) or (&).

A simple verification shows that Xz(p) = (i?).—

Case 5: z[al, o = L(1+/-11) In this case (2) remains prime, so there

are no quadratic characters of (Z[al/(2)) , since this has order 3. But
(Z[a]/(Z)z) = <-1> x <0> , where O has order 6, so there are three
quadratic characters with conductor (2)2:

X with kernel <ao>;

X, with kernel <-1> x <o’>;

Xg = XyXye

A simple verification shows that xz(p) = \7;>.

86.2 Twisting Operators: Definition and Elementary Properties

Let 9 be an ideal of OK with a quadratic character

Xt (@ /@) =+ {xi}.

Assume that 9 is principal, generated by an element q of OK' Let Rq =
[q 1}; then RK = |4 AW (in PGL(2)) for natural numbers A. We extend
0gq g (04 :
this definition to arbitrary A € 0K by setting
Ao e A,
(6.2.1) Rq = 1o q}
observe that R; = Rq’ that R: =T = é 1 , and that the law of exponents

A

holds: R'R" = RMH,
qq

’ Also, if X = y (mod q) then Ri = Rz (mod Ao (),

Now let a be an ideal such that q* divides a. If v = {a b] is an
2
q°c d

element of Ag(a), and A and U are in OK’ we have
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)\ _ (a+)\qc b+M_}\UC
YR P = q
4 4 q’c d - uqe
which is in Aoza) provided that Ad = pa (mod q). Since ad-beq? = 1, we
have ad = 1 (mod q), so an equivalent condition is that
(6.2.2) U = Ad? (mod q).

So for a given Y € Ag(a) and a given A, there is a p (unique modulo q)
such that R>\YR—u e Ag(a).
q q
Fix a set U(q) < 0K which forms a complete set of invertible residues
modulo q. Then we define RX to be a particular element of the group
algebra of PGL(2,K):

(6.2.3) R

A
L x(OR™ .
X AeU(a) 4

Lemma 6.2.4 (c.f. [3] Lemma 29) Let q and Y be as above, and a an ideal
divisible by qz. Let F ¢ S(a), as defined in §3.3. Then

(i) FIRX is in S(a);

(ii) If (OK/q)X has exponent 2, then for any )\, the matrix Ré normalizes
A¢(a), and F[Ré is in S(a).

Proof: As remarked in the proof of Lemma 3.3.7, we only have to verify
that F|RX (respectively F|R2) are invariant under Ag(a). If vy e Ag(a), ther

A u
ElR) Iy =F ] xORy=F[] xwr" =F[R
X AeU(q) 4 uet(q) d X

since for a fixed y, different X in U(q) give rise to unique distinct

x(Ad%) = x(Ox(D?2 = x(1). In (ii) the condition on

in U(q), and x(u)
g

q implies that d 1 (mod q) for any d relatively prime to q, so that
U= A (mod q) by (6.2.2); hence Ri normalizes Ay(a) as required.

Lemma 6.2.5 Let q, X, and a be as in the previous Lemma. Let p be a
prime dividing a to the exact power e, but not dividing q, generated by
T € OK. Then if F ¢ S(a) we have

(6.2.6) (FlRX)IWW - X(ﬂe)(F]Wﬂ)]RX.



Proof: Only trivial changes are needed to the proof of [ 3] Lemma 30.

Lemma 6.2.7 Let X be a gquadratic character with prime conductor p = (T),
and let a be an ideal such that p? divides a but (p_za,Fﬂ = (1), Then
for each A with (A,m) = 1 there exists A' such that
(1) x() = x(Q");
(i) RﬁWHRiv e ho(p la).
Proof: Identical to [3 ] Lemma 31 (ii).

Recall, from 3.2.12 and 3.2.17, that a cusp form for Ag(a) has a
Fourier series expansion of the form (3.2.13);

6.2.8) F(z,t) = ] c(@EM lar)un loz)
anK

where n € OK generates the different § of K, and | is the additive
character of K, given by ¥(z) = exp(-2mi(z+z)).

Let X : (OK/q)x +{z € C: |z| = 1} be any character modulo an ideal
q of OK' Extend X to the whole of 0K by defining ¥X(A) = O whenever
(A) + q = OK. Then we can define an operator EX directly on Fourier

series: 1if F is given by (6.2.8), then we define

o -1 —i]
(6.2.9) (FIRX)(z,t) = ) x(@ec(@HM a)Y(n az).
aeO.
K
Proposition 6.2.10 Let X be a character with conductor q = (q), as above,
and F a harmonic function with Fourier series (6.2.8). Then
B~ = .F|R
R, g0 -FIR,
-1
where g(x) := ) xDvn A/q).
A mod q

Proof: By (3.2.4) we have

>

, t)

(Fle)(z,t) = F(z + z

T (WEM o) y(n oz +-§>>

Q|

-z c<a>H<n'1at)w<n'laz>w<n'1a§>.

Hence (F|R )(z,t) = F c(@E(M ao)v(n az) [ x(Ov(n bty
X A mod q 4
. B owl -1 -1 v 1, =1 o
= 2 x(@)ec(@HM "at)P(n "az) L x@)ypn 1
A mod g

g(x).(Flﬁk)(z,t)

since if (a,q) = 1 then



T oox@yum !ty o T yooenT d = g0,
A mod q 4 A mod q 4
while if (o,q) # (1) then x(a) = 0 and
Toxown! %) - o.

A mod g

Proposition 6.2.11 Under the hypotheses of the previous Proposition,

suppose also that F € S(a) where a is divisible by a°. Let p1 = (ﬂl) be

a prime not dividing a, and p, = (T.) a prime dividing a to the exact
4 2 2

power e. Then
(1) (FIRX)[TTTl = X(Wl).(F[Tﬂ])IRX;

(ii) (F|E’X)]w,,T X(ﬂg).(F|Wﬂ2)|§k if x(T,) # 03

2

(iii) (FlRX)IJ o1

Proof: Part (ii) follows from Lemma 6.2.5 and Proposition 6.2.11. Part

*
X(E).(F|J)|RX , where as usual <g€> = OK and J=[€ OJ.

(1) follows from inspection of the Fourier series, using (6.2.9) and

(3.3.7): the coefficient of (Frﬁx)|T1T at o € 0K is

( \

\N(TT)X(OHT)C(OUIT) + X(OL/TT)C(OL/TT)/g(X)

( \

= x(ﬂ)x(a)\N(ﬂ)c(aﬂ) + c(a/ﬂ)/g(x)
since X(uﬂ_l) = x(m)x(a) if Wla; on the other hand, the coefficient of

(F|Tﬂ)|§% at o is
x(u)<N(ﬂ)c(aﬂ) # c(u/W)>g(x).
-1

o il 3 £
As for part (iii), first note that RSJ = JRq k. Then

(FIR)|J ) x(K)FIRAJ
X A mod q !
|

z X(X)F|JR§ A

I

x(e) I X(e“x)(F|J)|Rz

)((8)(1"[J)|RX as required.



§6.3 Twisting Operators: Newforms from 0ld

For primes T dividing the ideal a, there is an operator UTr defined on
S(a) which is similar in some respects to T for 7 not dividing a. If
i

F is a harmonic function, define

1A
(6.3.1) FlU_ := ¥ FI( }
m A mod T O
so that (FIU Y(z,t) = Z F(E—i—A ’ E). A calculation similar to
m T m
A mod T

the derivation of (3.3.7) shows that if F has a Fourier series with

coefficients {c(a)}, then F|UTT has Fourier coefficients {c(am)}.

-1
Lemma 6.3.2 If F € S(a) and 1% divides a, then F|U7T e S(a(m) ).

Proof: As for [ 3], Lemma 7.
Lemma 6.3.3 If (ﬂ]) # (ﬂz) then (F[Tﬂ )IU1T = (FIUTr )ITTr .

1 2 2 1
Proof: Let F have Fourier coefficients {c(a)}. Then by (3.3.7),

O =
F|T_ has coefficients {N(mw )c(am,) + c(am, )}, and so (FIT )IU has
™ 1 1 1 ™ Ty
coefficients {N(Wl)c(aﬂlﬂz) + c(aﬂzﬂI])}. Applying the operators in the
opposite order yields the same coefficients. Note that our convention
that c¢(B) = 0 whenever B ¢ OK’ yields
c((a/m)m) = cl(am)/m ),

as m |a if and only if m |am,, since (m,my) = (1).

2’
Lemma 6.3.4 Let F € S(a) where a is divisible by q% and let X be a

quadratic character with conductor q. Then for any 7 dividing a,
(F|RX)|UW = X(ﬂ)(F[Uﬂ)]RX. |
Proof: Immediate from the Fourier series. Note that the result is

valid even if x(m) = 0, for then the left-hand side is zero also.
Lemma 6.3.5 If F is a newform in S(a), and T? divides a, then F]UTr = 0;
Proof: Since F is a newform it is an eigenform for all the Tﬂ, for 7' X a,
with eigenvalues a(7m'), say. Then by Lemma 6.3.3 we have

(F|UH)ITW, = (F[Tﬂ,)[Uﬂ = a(n')F|UTr
and so F]Uﬂ, which is in S(a(ﬂ)_l) by Lemma 6.3.2, has the same eigenvalues

as F for all 7' | a. Since F|UTT is an oldform in S(a), it follows from
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the results stated at the end of 83.3 that F|UTr = 0.

Proposition 6.3.6 Let G be a newform for A,(b) for some ideal b dividing

a, and let G* be a member of the corresponding 'oidclass' for Ay(a): that
is, G* is a linear combination of functions G|(g ?] for various divisors
A of ab-l. If T is a prime dividing a such that G* is an eigenform of
both U1T and WTr then T does not divide ab-].

The proof of the analogous proposition in the rational case is in [ 3],
as part of the proof of Theorem 5 there. As it is fairly long and

entirely technical we omit it here.

Corollary 6.3.7 A form in S(a) which is an eigenform for each TTr for
kil 1 a and each UTT and wﬂ for T | a, 1s a newform.

Corollary 6.3.8 Suppose F ¢ S(a) is an eigenform for all the TTT for ﬂl a,

and there exists Ty | a such that F is an eigenform for each UTr and WTr
for m a except T = Tyg. Then F is a member-of some oldclass in S(a)
defined by a newform G € S(b) where b divides a and ab_1 is a power of (mp).
Proof: Since F is an eigenform for ’l[‘,,T for each ™ [ a it follows that F
~is a member of some oldclass, by the results stated at the end of §3.3.
If this oldclass is defined by G, a newform in S(b), then the Proposition
shows that only Ty can divide ab-l.

We now show how the twisting operators R_ can, under suitable
circumstances, produce newforms. For simplicity we restrict to the
case where the conductor of Y is an odd prime ideai p; similar, but
more complicated, results hold for other ¥, which would havé to be dealt
with for each field in turn.

Let a be an ideal divisible by p to the exact power e, where e > 2 so

that we can define RX on S(a). Let F be a newform in S(a) and set F* =
F[RX. If F* is not a newform, then as it is an eigenform for all the
TW, for w' 1 a, and for Uﬂ, and WW, for ' I a, except m' = m, by

Corollary 6.3.8 we have

F* =

Il ™ Fh
»

T
(G][W O] \; (xre C)



where G is a newform in S(b) and b—]a = Df for some £ > 1. If the

Fourier coefficients of F* and G are a(@) and b(o) respectively, we thus
have

E -r
(6.3.9) a@) = rZ=U xrb(om ).

Taking o= 1 we find that a(l) = xob(l) = x,. (since G is a newform and

0

thus has first coefficient 1). Ifm [ o then a(@) = 0 since (@) = 03

if m * o then (6.3.9) shows that

a@) = xp@) = bE)
(where Xy = a(l) =1 since a(l) ig the first coefficient of F which is a
newform). Hence we obtain the Fourier series of F* from that of G by
deleting all terms corresponding to a € OK such that 7 | a. Since F =

F*lRX (because p2[a,by Lemma 6.3.5) we thus have F = G|RX.
This implies that F is a cusp form for Ay(C) where C = bp® and g =
max(e-£,2) - (e-f), and so
(e-f) + max(e-f,2) - (e-f) 2 e, or
max(e-f,2)2 e.
The conditions e 22 and £ 2 | then give only the possibilities e = 2,
f =1 or 2.

Conversely, if G is a newform in S(ap_l) or S(ap-z) where P* divides

a exactly, define F = GIRX. This is certainly in S(a; it is an
eigenform for all Uﬂ, and Wﬁ, form' | aand (M) = (@'). As for T itself:
for each A (mod 7) we can find A' with x(A) = x(\ ') such that RiWﬂRﬁ' €
AoCap ') by Lemma 6.2.7 .  Then

G |RT)‘TWTT = ¢ ]R?".

Summing over a set of invertible residues ) modulo 7 gives
GR) W = y(-DGR
X X
and so F is an eigenform for W also. Moreover F[U = 0 by Lemmas 6.3.4
m T
and 6.3.5, so in fact F is an eigenform for all W, and U , for 1| 5.
- m m '

By Corollary 6.3.7 it follows that F is in fact a newform in S(@).

We sum up the preceding discussion in the following.
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Theorem 6.3.10 Let X be the quadratic character with conductor P, where

p is an odd prime ideal generated by an element T of OK' Let F be a
newform in S(a) where p2 divides a, and set F* = F|RX.
(i) If p3|a then F* is also a newform in S(a), possibly equal to F.
(ii) If p2 divides a exactly and F* is not a newform in S(a), then
there exists a newform G in S(ap—l) or S(ap—z) such that

a) thé Fourier series for F* is obtained from that of G by
deleting the terms corresponding to O € 0K such that T divides 0O;

b) the eigenvalues of F* for all TW,(for ﬂ'[ a) and for Wﬂ, and

U (for m' | a and (m) # (m')) are the same as those of G;

!
c) F1wTT = Y(m)F.
Conversely, if G is any newform in S(ap—z) or S(ap—l) where p? divides
a exactly, then F:= GIRXis a newform in S(a) with eigenvalues derivable

from those of G by Lemmas 62.6, 6.2.]] and 6.3.4 for (m) # (m'), and

FIUW =0, FIW1T = Y(T)F.

+ -
§6.4  Application: The Correspondence between V and V

We end by applying the results of the previous sections of this Chapter
to prove that, in the case of Q(v-1), the connection between spaces of

s + = . 5 .
newforms in V and V is indeed achieved by means of the twist R as

2’
stated in §5.6. We also prove similar results for the other Euclidean
fields.

Case Q(v-1) Let K = Q(i), where i = v~1 as usual. Let x : Z[i] - {#1}v {e

be the character defined by

x(a) = 0 if o = 0 (mod 1+1);
+1 if o = 1 (mod 2);
-1 if o = 1 (mod 2).
Then X has conductor 2; write R2 for the twisting operator RX. It is

now clear that the Theorem of §5.6, which we restate here, is true.
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Theorem 6.4.1 Let a be an ideal of Z[i] such that (1+i)4 divides a.

Then the map R, : V(a) = V(a) satisfies

2
(1) R2J = } JRZ;
. _(m , . . . )
(ii) R2TTr = Z\TWRZ if T is prime, (m) =z (l+i), and (m) J a;
(iii) RW_= (AW R if 7 i ' (m) = (1+i), and (m | a,and ) a
i W = \2/ & is prime, 5 y s

Proof: Part (i) follows from Proposition 6.2.11(iii) since x(i) = -1;
similarly, parts (ii) and (iii) follow from Proposition 6.2.11(i) and (ii)

’

since if (m) 2z (1+i) then x(m) = &g), the quadratic character modulo 2.
/

Case Q(vV-2) Set K = Q(8), where 6 = v-2; the unit group of 0K = 72[v~2]
is generated by -1. To interchange V' and V_ we need to twist by R

for some character ¥ with y(-1) = -1, by 6.2.11(iii). There is no such
character with conductor (2), but there are two possible characters
modulo (45: they were called Xy and XXy in 86.1. Hence for Q(8) we
have the following result.

Theorem 6.4.2 Let X be one of ﬁhe two quadratic characters of Z[6] with

conductor (6)4, and a an ideal of 7[67] such that (6)8 divides a. Then
the map RX : V(a) > V(a) satisfies
(1) RJ = -JR ;
X 'Y
(11) RXTTT

x(TT)T,nRX if (m) = (6);

(iii) R.W X(WSW R if (m) = (@), and 7 divides a to the exact power e.
£ W ™ X

+ -
As a corollary of (i), we see that RX interchanges V (a) and V (a)

for an ideal a such that (6)8 divides a. To illustrate this, we refer to
+

Tables 5.2.2 and 5.2.3. There is a newform in V (95), with a correspond-

ing newform in V-(GS); also there is a conjugate pair of newforms in

= . : . . +,.8
\Y (67), whose twists occur as a conjugate pair of newforms in V (87).

Case Q(v/-3) Recall that p = }(1+/-3). We have the following result.

Theorem 6.4.3 Let ¥ be one of ‘the two guadratic characters of 1[p]




158

with conductor (2)2 such that Xx(p) = -1, and let a be an ideal of Z[p]

such that (2)4 divides a; then the map RX : V(a) > V(a) satisfies

(1) R J =-JR_;
X X’

X(N)TWRX if (m) = (2);

(i1) RXT1T

e
(iii) RXW1T X(ﬂ)WWRX if (m # (2),and T divides @ to the exact power e.
There are no illustrations of such a twist in §5.3, because the only

ideal a in the range of the tables divisible by (.2)4 is (2)4 itself, and

dim V) ) = 0.

Case Q(v-7) Write o = 1(1+/~7) and let A be one of the primes dividing

2 in Z[al; so A = a or A\ = a. There is a quadratic character ¥ with
conductor (OL)2 such that ¥(-1) = -1, and similarly the conjugate character
X has conductor (&)2. So we have the following result.

— 2
Theorem 6.4.4 Let | be one of the characters ¥,X with conductor (\)~,

%
say. Let a be an ideal of Z[o] such that ()\) divides a. Then the

map Rw : V(a) - V(a) satisfies

(i) R, J =-JR ;
Y v’
(ii) RwTﬂ = W(w)TﬂRw if (m) = (N\);
(iii) waﬂ = w(n§w Rw if (m) 2 (A\),and ™ divides a to the exact power e.
il .
To illustrate this, we refer to Tables 5.4.2 and 5.4.3. There is a

newform in V+((7+3a)) whose twist is a newform in V_((13-7a)): here,

(7+30) = (1+20) @° and (13-70) = (1+20) @"; in Table 5.4.3, the newform
conjugate to the latter is given, in V ((6+70)). Also, there is a

newform in V+((2-7a)) with a corresponding newform in V—((14—5a)), whose
conjugate in V—((9+5a)) is given in Table 5.4.3. Here, (2-7a) = (a)3(1+2a)

and (14-50) = (a)4(1+2a).

Case Q(v-11) Set a = J(1+/-11). Now (2) is prime; there are no

quadratic characters with conductor (2), but there are three with conductor

(2)2, of which two satisfy ¥x(-1) = -1. Hence we have the following.
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Theorem 6.4.5 Let X be one of the quadratic characters of Z[ o] with

conductor (2)2, satisfying ¥(-1) = -1. Let a be an ideal of ZI[ o] with
(2)4 ] a. Then RX : V(a) - V(a) satisfies
(i) JR. = - R J;
X O
(ii) T1TRX = X(W)RXTW if (m) = (2);
(iii) WWRX = x(TrgRXWTT if (m) # (2),and ™ divides a to the exact power e.

There are no examples of these twists in Tables 5.5.2 and 5.5.3, since

. . 4
none of the levels a covered by those tables is divisible by (2) .

We finish by giving one last example from Q(i) to illustrate the
correspondence Petween V' and V', the correspondence between V" and
elliptic curves, and to show how twisting a newform corresponds to
twisting the corresponding curve.

At level (10) for Q(i), there is a newform in V+((]O)), and a correspond-
ing elliptic curve y? = x> + x> - x (number 6 in Table 5.1.4).
Applying the (2i-1)-twist, we obtain a newform at level (10)(2i-1) =
(20i-10), and because i is not a square modulo (2i-1), this newform is
in V ((20i-10)). There is no corresponding curve. If we then apply R

29
. . d + s
in 2rder to obtain a newform in V , to the latter, we find, as expected,

a newform at level (20i-10) n (1+i)* = (40i-20), in V' ((40i-20)).
Moreover, if we twist the original curve by 2i-1 we obtain the curve
2
y*> = x'+ (2i-Dx® - (2i-Dx

which has conductor (401i-20) and corresponds to the latter newform.
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