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Abstract

This thesis presents three pieces of work. The first gives full details of a prac-

tical technique for performing second 2-descent on elliptic curves over Q without

2-torsion, by associating with the two-descendent curve C : y2 = f(x) an alge-

bra L = Q[x]/(f(x)) such that the four-coverings arising as two-coverings of C
correspond to elements of M = L×/Q×(L×)2, finding the coset D

alg
4 of M in

which such four-coverings lie, checking which elements of D
alg
4 give everywhere-

locally-solvable four-coverings, constructing these four-coverings as explicit in-

tersections of quadrics, minimising and reducing the intersections to give equiv-

alent four-coverings of much more convenient form, and finally presenting two

ways to find points efficiently on such four-coverings; the algebraic part also

works over number fields K 6= Q.

The second investigates the distribution of the ranks and the Tate-Shaferevich

groups of elliptic curves from three families (curves with many small integral

points, Mordell curves, and curves of the form y2 = x3 + 17x + K) using the

four-descent of the previous part, and a novel algorithm for finding curves with

many small integral points. It presents the Mordell curves y2 = x3 ±K with

smallest K and rank six, and the curves of smallest conductor currently known

for ranks five through nine, several of which are new discoveries; it presents

previously-unobtainable experimental results on the distribution of the struc-

ture of X.

The third section uses some refinements of nineteenth-century results on Her-

mitian quadratic forms to overcome the one remaining obstacle to an invariant-

theory-based 2-descent algorithm over the Gaussian integers Z[i], and to provide

a reduction algorithm which may be useful for improving the algebraic-number-

theory-based 2-descent over Z[i].
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Chapter 1

Introduction

There are three largely independent chapters to this thesis, of which the most

important is the first, which presents work which has led to a practical imple-

mentation of second 2-descent on elliptic curves without 2-torsion. The second

introduces a new algorithm for finding curves with many small integral points,

and presents the results of much experimental work, using this algorithm, second

2-descent and other approaches, on the distribution of ranks of elliptic curves

and of the structure of Tate-Shaferevich groups. The third uses some refine-

ments of nineteenth-century results on Hermitian quadratic forms to overcome

the one remaining obstacle to an invariant-theory-based 2-descent algorithm

over the Gaussian integers Z[i], and to provide a reduction algorithm which

may be useful for improving the algebraic-number-theory-based 2-descent over

Z[i].

Let E be an elliptic curve, and let K be some number field. Traditionally,

the problem of finding E(K) has been split into two parts: computing the rank

of the Mordell-Weil group, and finding an explicit set of points to generate the

group. And, traditionally, K has been taken to equal Q; progress on any field

of degree > 2 was very limited until the work of Simon [66] in mid-2000, and

even with that work there is often great trouble in finding explicit generators.

Methods based on the L-series of the elliptic curve have had some significant

experimental success for the first part, at least for small (< 1015 on contempo-

rary computers) conductors, and Kolyvagin, Rubin and others [41] have proved

that the analytic and actual ranks of the Mordell-Weil group are equal for

r = 0, 1; for higher ranks, however, the methods rely on still-conjectural parts

of the Birch–Swinnerton-Dyer (B–S-D) conjecture.

In the rank one case, an analytic method based on Heegner points [28] may

be used to find the generator. For a curve of conductor N and a generator of

height h, the computation required is O(Nh); a number of terms proportional
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to N must be calculated to O(exp(−h)) precision. For N < 106 this technique

is reasonably practical.

But, if the rank is ≥ 2 or the conductor at all large, none of this analytic

approach will help for the second task of actually finding rational points. And

in any case it would be nice to have an algorithm which does not require B–S-D,

since there seems no hope of an imminent proof of their conjecture.

Searching for solutions of y2 = f(x) using a large number of quadratic sieves

modulo prime powers, and (at least when f is of even degree) p-adic arguments

to restrict the prime factors of the denominator, can be made exceptionally fast;

on y2 = f(x) with f cubic, where the points are all of the form
(

x/z2, y/z3
)

,

rational points with näıve height up to 15 (that is, four or five digits in x and

z) can be found in 15 seconds or so. But the direct search still takes time

exponential in the height, so is impractical for näıve heights much above 20.

Fortunately, for each prime p we have an embedding E(Q)/pE(Q)→ Sp(E)

into the p-Selmer group. Sp(E) is a p-group, consisting of equivalence classes of

principal homogenous spaces C (genus-1 curves birationally isomorphic to E),

each equipped with a degree-p rational map jC : C → E, and such that each

C possesses points over all local fields Qp; a process known as p-descent allows

us explicitly to find a representative for each of its elements. The elements of

Sp(E) all have points over Q` for all `; the image of E(Q) in Sp(E) consists of

those C which have a point over Q itself.

Any curve in Sp which has a rational point P corresponds to a coset jC(P )+

pE(Q); the curves on which there are no rational points represent elements of the

Tate-Shaferevich group X[p](E). The difficulty, of course, is in distinguishing

curves without a rational point from curves with a rational point beyond the

reach of our searching.

The 2-descent is the only one currently widely used in practice, though

work of Stoll, Cremona, Fisher and others [26] is making 3-descent possible.

Unfortunately, X[2] is often non-empty: of the 2.4 million curves examined in

section 3.4.2, more than 330, 000 appear to have X[2] 6= {1}.
This thesis revolves around a second 2-descent, which we call a four-descent.

For each C ∈ S2(E) on which we failed to find a rational point, we compute

a group D4 consisting of curves H with degree-2 rational maps ψH : H → C,
such that each rational point on C is the image of a rational point on precisely

one of the H. If empty, this indicates that C represented an element of X[2]

and so had no rational points; if not, we can search for points on each of its

elements. If they do not exist, we have a representative for an element of X[4];

if we find one, we can lift it to a much larger point jC(ψH(P )) on the original

elliptic curve.

Experiment suggests that X[4] = X[2] for about 85% of curves with X[2] 6=
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{1}, and that, on curves with rational points, four-descent will find points of

canonical height up to about 140.

1.1 Minimisation and reduction

The terms “minimisation” and “reduction” describe two allied tasks, both of

which are extremely important for making descent calculations practical. Let

F (1) and F (2) be spaces equipped with a left G-action. A covariant function

f : F (1) → F (2) is a function with, for all g ∈ G, g · f(A) = f(g · A); a

contravariant function has g · f(A) = f(g−1 ·A) ∀g ∈ G.

Consider a space F of forms in n variables, on which there is an action of

some GLn(Q) – for example, bivariate homogeneous polynomials, where M =
(

a b

c d

)

acts by M ·f(x, y) = f(ax+by, cx+dy). We often find functions on the

forms which, under that action, are scaled by some power of the determinant of

M – in the example case, among them is the discriminant ∆, where

∆

((

a b

c d

)

· f(x, y)

)

= (detM)n(n−1)∆(f).

On a pencil of forms, with generators say 〈g1, g2, . . . gr〉, there is an additional

action of GLr(Z) which replaces the generators with linear combinations of

them.

Suppose we wish to consider only integral forms (that is, forms with coeffi-

cients taken from the ring of integers of some number field K); naturally we can

scale any form with K-rational coefficients until its coefficients become integral,

but this will increase the invariants. Minimisation is a p-adic process in which,

by transformations in GLn(K), we try to make the p-valuations of certain co-

variant functions as small as possible whilst keeping the form p-integral. The

covariants for an integral form will be integers, so the minimum valuation is

well-defined at any prime p. Over fields with class number 1, it is possible to

minimise at p using only transformations with determinant a power of π (where

πOK = p), meaning that there exists a globally minimal version of a form,

whose invariant has minimal valuation at all primes.

Similarly, for any n-ary form with integer coefficients, we can pick any

positive-definite function of the coefficients, and then consider how this func-

tion’s value behaves as you move from a form f around the set of forms equiva-

lent to it under the action of SLn(Z): again, this set will have a minimum, and

reduction consists of picking a function such that finding this minimum is prac-

tical, and then finding the minimum. The idea here is to make the coefficients
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of the form smaller: the hope is that this also makes the coordinates of points

lying on the hypersurface cut out by the form smaller, and so the points easier

to find.

For at least three kinds of objects, a good reduction theory exists already:

lattices (by the LLL algorithm, though there is a problem with uniqueness in

dimensions higher than four), points in the upper half-plane H2 under Möbius

transforms by SL2(Z), and points in upper half-space H3 under Möbius trans-

forms by SL2(OK) for K = Z[i] or K = Z[
√
−2]. So a common approach to

reduction is to find a covariant or contravariant function ψ from the set of ob-

jects to be reduced to one of these sets of objects with a known reduction theory,

and define X as reduced iff ψ(X) is. Given the covariance, if we can find M

such that M · ψ(X) is the reduced form of ψ(X), then ψ(M · X) = M · ψ(X)

and we can use M · X as the reduced form of X; if ψ were contravariant, we

would use M−1 ·X .

1.2 Selmer groups, and X

Let GK = Gal(K/Q); noting that H0(GK , E) = E(K), we form a long exact

sequence of Galois cohomology from the trivial diagram

0 // E[n] // E
×n // E // 0

to obtain the Kummer sequence

0 // E(K)/nE(K) // H1(GK , E[n]) // H1(GK , E)[n] // 0

The diagram can be specialised at the field K and at all its completions Kp,

giving a diagram

0 // E(K)/nE(K) //

��

H1(GK , E[n]) //

��

H1(GK , E)[n] //

��

0

0 //
∏

pE(Kp)/nE(Kp) //
∏

pH
1(GKp

, E[n](Kp)) //
∏

pH
1(GKp

, E(Kp))[n] // 0

The Selmer group Sn(E,K) is then the set of elements of H1(GK , E[n]) whose

image in
∏

pH
1(GKp

, E[n](Kp)) arises from an element of
∏

pE(Kp)/nE(Kp);

that is, the set of everywhere locally soluble elements. Going round the diagram,
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we have E(K)/nE(K) ≤ Sn(E,K); define

X(K)[n] = Sn(E,K)/(E(K)/nE(K)).

Kloosterman [44] has recently proved that, for K sufficiently large (of degree

O(p4)), there exist curves defined over K such that X[p] is arbitrarily large; for

p = 2, 3, 5 it is known ([6], [34]) that this holds for K = Q.

The Birch–Swinnerton-Dyer conjecture over Q asserts that

‖X‖ =
L(r)(E, 1) ‖Etors‖2

ΩRE

∏

cp

where r = rankE, Etors is the subgroup of E consisting of elements of finite

order, Ω the real period, cp the local Tamagawa numbers, and RE the determi-

nant of the height-pairing matrix for the generators of E. The quantity on the

right-hand side of this equation can be calculated explicitly, and without inor-

dinate difficulty provided that E has rank zero – for rank one we have to find

a generator, and for rank two and above we need to ensure that we find a set

of generators which give E(Q) rather than some finite-index subgroup (Prickett

[52] is working on this issue) – and will be called Xanal; see section 3.1.2 for

some practical details on the computation.

The following groups will often be mentioned in what is to follow:

Definition 1.2.1. X[2∞] is the set of elements of X of order a power of two.

X[2n] is the set of elements of X[2∞] of order dividing 2n (so X[2] ⊂X[4] ⊂
X[8] . . .), and 2nX is the set of elements of X[2∞] of exact order 2n.

1.3 n-coverings

The elements of Sn(E) are called n-coverings of E, or elliptic normal n-ics; this

last notation is particularly used in the n = 5 case intensely studied by Fisher

[36], and often indicates that the objects are considered geometrically rather

than arithmetically. I normally call them coverings, but use “descendents”

when I wish to emphasise that they are being constructed by a descent process.

The shape of the n-coverings is given by the Riemann-Roch theorem; 2-

coverings are of the form y2 = g(x, z) for g a integral binary quartic form, and

3-coverings f(x, y, z) = 0 for f a ternary cubic form. For n ≥ 4, an n-covering

is given by a set of 1
2n(n−3) quadrics in Pn−1; and, conveniently, for n = 4 any

pair of quadrics satisfying a simple non-singularity condition corresponds to a

4-covering of some elliptic curve. Syzygies between the invariants of n-coverings

give us the maps j : C → E, so given an n-covering we can in principle compute

the syzygy and obtain the map; we call j the syzygy map on C.
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For n ≥ 5, a random collection of 1
2n(n − 3) quadrics in Pn−1 need not

define an n-covering of any elliptic curve: at n = 5, we at least know the

subspace which corresponds to elliptic curves, thanks to Buchbaumm, Eisenbud

and Fisher [10], [36], [37], who showed that the quadrics for a 5-covering arise

as the five 4× 4 Pfaffians of a 5× 5 matrix of linear forms in P4, and conversely

that the Pfaffians of any such matrix indeed form a 5-covering for some elliptic

curve.

The paper [55] collects conveniently the Jacobian maps (which indicate which

elliptic curve EC a n-covering C corresponds to) and the syzygy maps jC : C →
EC for n = 2, 3, 4. For n = 5 the situation is less good, since the Jacobian map

is too complicated to write down as an explicit polynomial (though EC can be

computed quickly for any given C), and the jC are as yet unknown: all that is

known for this case is in [36].

The method of fermionic Fock spaces used by Anderson in [1] extends in

principle to arbitrary values of n. However, it involves symbolic differentiation

of some rational functions of large degree, over fields with a large number of

indeterminants – it starts in k = Q(a0, a1, . . . am) where the ai are the variables

in the parametrisation of an n-covering, works in the function field K of the

n-covering, constructs a k-linear derivation on K, defines a function ℘ as a sum

of ratios of Jacobian-like determinants of matrices of repeated derivatives, and

then derives the g2 and g3 of the underlying elliptic curve by solving

(

℘′

4

)2

− 4℘3 = −g2℘− g3,

also obtaining a map jD from the n-covering to the curve by solving ℘ = x◦ jD.

The computation for this approach is a matter of extremely complicated

Gröbner-basis calculations, and in [1] the author’s computer was not able to

contain the general case for n ≥ 3.

1.3.1 Adding points with Riemann-Roch

The Riemann-Roch theorem allows us to compute explicitly on any genus-one

curve V , at least once we have a base point O giving V the structure of an

elliptic curve.

Recall that a divisor on the curve – an element D ∈ Div V – is a finite sum
∑

λiPi of points with multiplicities λi ∈ Z; a divisor is positive if all the λi > 0,

and the degree of the divisor is
∑

λi. Recall also that you can construct the

divisor Div f of a function f on V as the sum of its zeroes (with multiplicity

equal to their multiplicity as zeroes) and its poles (with multiplicity equal to

the negation of the degree of the pole), necessarily obtaining a divisor of degree
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zero; the divisor of a function is called principal. The Jacobian of V is defined

as JacV = Div0 V/PrincV , the degree-zero divisors quotiented by the principal

divisors.

A divisor is K-rational if it is invariant under the action of Gal(K/K);

we can therefore talk about the K-rational points on the Jacobian of a curve,

by replacing “divisors” by “K-rational divisors” in the definition of Jacobian.

These K-rational points on the Jacobian form an Abelian group, analogous to

the Mordell-Weil group of an elliptic curve.

Given our base point O, the point P ∈ V corresponds to the degree-zero

divisor (P ) − (O) in JacV ; so, to compute R = P + Q, we would like to find

a point R ∈ V with (R) − (O) ≡ (P ) + (Q) − 2(O) in JacV – that is, with

(P ) + (Q)− (O) = (R) + Div f for some function f on V . Let D be the degree-

one divisor (P ) + (Q) − (O). The Riemann-Roch theorem tells us that, for V

of genus one, the space of functions f on V such that Div f + D is positive

is one-dimensional; the RiemannRochSpace function in magma can construct an

explicit generator g for this space. Now, Div g + D is a positive degree-one

divisor, so must be of the form (R) for some point R ∈ V ; this R is the desired

sum.

The normal line-and-extra-intersection method of adding points on an el-

liptic curve E corresponds to the Riemann-Roch approach with the point at

infinity as O. Write the group of points on a curve C, taking the point P as

the origin, with co-ordinates from a field L, as [C(L), P,⊕P ]: ⊕P is the addition

law. We will need to examine the interplay of different addition laws in later

work; there is a law rather like associativity:

Lemma 1.3.1. Writing ⊕0 and ⊕α for ⊕P0
and ⊕Pα , to avoid redundant sub-

scripts, we have

P ⊕0 (Q⊕α R) = (P ⊕0 Q)⊕α R

.

Proof. For this proof, I write [P ] for the divisor consisting of the point P ; the

usual notation uses parentheses, but these are very confusing in a context where

we also use parentheses to bracket terms.
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[P ⊕0 (Q⊕α R)] = [P ] + [Q⊕α R]− [P0]

= [P ] + [Q] + [R]− [Pα]− [P0]

= [P ] + [Q]− [P0] + [R]− [Pα]

= [P ⊕0 Q] + [R]− [Pα]

= [(P ⊕0 Q)⊕α R]

On any curve C : y2 = f(x), where

f(x) =
4
∑

i=0

aix
i ∈ K[x]

is a quartic polynomial with leading coefficient a = a4, we have a singularity

at infinity, consisting of a pair of points defined over K(
√
a). Moving into

projective co-ordinates and desingularising by writing x = X/Z, y = XY/Z2,

the pair of points are sent to P∞+ = (1 :
√
a : 0) and P∞− = (1 : −√a : 0).

Define D∞ = (P∞+) + (P∞−) as the divisor of points at infinity; a function

x− x0 on C has divisor

((x0,
√

f(x0))) + ((x0,−
√

f(x0)))−D∞,

and, if we have points P = (x, y) and P ′ = (x,−y), divisors of the form

(P ) + (P ′) will all be equivalent to one another and to D∞. The map P → P ′

defines negation in [C, P∞+ ,⊕∞+ ], in a very similar way to the standard defi-

nition for elliptic curves. Note that all these divisors are K-rational, since they

are sums P + P σ for σ ∈ Gal(K[
√
λ]/K) for some λ.

1.4 Generalities about intersections of two quadrics

1.4.1 Some notation

Recall from [51] that a four-covering is given by an intersection of two quadrics

in P3. In characteristic not equal to two, a quadric in P3 may be written as

xMxT = 0 where x = (x1, x2, x3, x4) is the set of variables andM is a symmetric

4 × 4 matrix. So, in nearly all that follows, we represent the four-covering

xAxT = xBxT = 0 by the pair [A,B] of symmetric matrices with integer

coefficients. For such a pair, define σ(x, z) = det(Ax + Bz) and ∆ = discσ; if
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∆ is non-zero, [A,B] represents a two-covering of the two-covering y2 = σ(x, z).

The discriminant condition ensures that this covering curve is non-singular.

Given this, we use “four-covering” and “intersection of two P3 quadrics”

synonymously in all that follows. If we wish to talk about a four-covering

of a specific elliptic curve, we call it a four-descendent of that curve. When

describing a four-descent, the elliptic curve at the top will be called E, the set

of two-coverings derived from the two-descent on it will be called D2, and any

individual two-covering we work with will be called C; the set of four-descendents

will be D4, and its elements H.

We also use D4 to refer to the whole space of four-coverings [A,B]. GL2(Q)

and GL4(Q) both act on D4;

(

a b

c d

)

∈ GL2(Q) sends [A,B] to [aA+ bB, cA+

dB], whilst T ∈ GL4(Q) sends [A,B] to [TATT, TBTT]. These actions clearly

commute: T (Ax + By)TT = TATTx + TBTTy. There is also a trivial action

of Q by multiplying A and B by the same non-zero constant λ, which clearly

commutes with the other actions.

However, we do not have a faithful action of Q×GL2(Q)×GL4(Q); elements

like
(

a−1b−2,

(

a 0

0 a

)

, diag(b, b, b, b)

)

act trivially. Taking a quotient by such elements, we are led to the definition

Definition 1.4.1. Let AD4
be the set of triples (λ,M2,M4) with λ ∈ Q×, M2 a

non-singular 2×2 matrix with integral coefficients, and M4 a non-singular 4×4

matrix with integral coefficients, such that detM2 is square-free and detM4

fourth-power free.

Then AD4
acts faithfully on D4; making the quotient action explicit, we

combine elements of AD4
by multiplying in Q × GL2(Q) × GL4(Q) and then

pulling out square scalar factors of detM2 and fourth-power scalar factors of

detM4 into λ.

det(λA+µB) is of course a homogeneous quartic form, so we can look at its

I and J invariants: these may come in useful in the reduction step to provide

further conditions for when a curve is impossible to reduce further.

When it is clear we are working at a particular prime p, we write Ã to

indicate the matrix obtained by reducing every element of the matrix A modulo

p.

We say that an integral four-covering is minimal at p if valp(∆([A,B])) is

minimal among all integral [A′, B′] obtained from [A,B] by the action of some

element of AD4
. Notice that, since the action of (λ,M2,M4) on [A,B] multiplies

∆([A,B]) by λ24 det(M2)
12 det(M4)

12, a non-minimal four-covering must have
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valp(∆([A,B])) ≥ 12.

1.4.2 Constructing intersections with given points

Given a point P = (x1, x2, x3, x4) in P3(Q), to find a quadric

Q(z1, z2, z3, z4) =
4
∑

i=1

i
∑

j=1

aijzizj

with Q(P ) = 0 is a matter of solving a single linear equation in the aij , and

there is a dimension-nine subspace of the ten-dimensional aij space consisting

of such quadrics. So constructing an intersection of two quadrics through a

given point is a matter of picking two linearly-independent points from such a

subspace. This is very useful for providing test data, especially for minimisation

where the main theorem applies only to curves with a point over Qp: assuring

a point over Q guarantees this.

Indeed, given any eight rational points P1 . . . P8, it is usually possible to find

a two-dimensional subspace of the aij consisting of quadrics passing through all

of them; the pair H = [A,B] of generators for this subspace is then the right

shape for a four-covering, and the maps of appendix B give an elliptic curve E

and a map Ψ : H → E. Surprisingly often, computing the determinant of the

height-pairing matrix indicates that Ψ(P1), . . . ,Ψ(P8) are independent, so E

has rank at least eight. Unfortunately, E also nearly always has coefficients so

enormous that there is no practical way of deducing anything more about it: its

conductor is large enough to make computation of the analytic rank unthinkable,

its discriminant so large that neither method of 2-descent is practical, and the

X co-ordinates of Ψ(Pi) have näıve heights large enough that a direct search for

more points on E is hopeless.

1.4.3 The invariants

For a single homogenous four-variable quadric, given as xMxT = 0 for M a

symmetric 4× 4 matrix, there is a single invariant of degree 4 for the action of

SL4(Z), which equals detM . Naturally, for a pair of such quadrics xMxT = 0,

xNxT, under the action of SL4(Z) × SL4(Z), we get detM and detN as the

degree-4 invariants.

Now, if we include also the action of SL2(Z) by linear combinations of the

matrices M and N , we will get a smaller set of invariants. Computing these di-

rectly using the whole 20-coefficient model given by the matricesM andN would

require prohibitive amounts of memory and CPU time. However, to survive the

SL4(Z)-part of the action, they will have to be in the ring Z[detM, detN ].
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In section 3 of the paper [51], using material from [73], it is stated that the

basic invariants of a pair [A,B] of homogenous four-variable quadrics are the

σi defined by det(Ax + By) =
∑4

i=0 σix
iy4−i. Also in that section are given

five covariant functions from ¶3(Q) to Q, and a syzygy between them which,

when we simplify it by requiring that the point x lies on the intersection of

quadrics, becomes something of the form det(AU(x) + BV (x)) = W (x)2 –

that is, it provides a mapping from points x on the intersection of quadrics

to points x = U(x), y = W (x), z = V (x) on the associated two-covering

y2 = det(Ax+Bz) . The covariants are detailed in appendix B.

1.5 Obtaining Sn: two approaches to descent

There are two approaches to descent. We can work via algebraic number theory,

showing that the n-coverings of a given elliptic curve are parametrized by the

finitely-many elements with appropriate properties of some algebra and, listing

those elements, constructing all the n-coverings. Alternatively, we can notice

that an n-covering is given by finitely many parameters, prove using invariant

theory that the set of inequivalent reduced, minimal n-coverings of a particular

elliptic curve is contained within a bounded region of the parameter space, and

search so as to find them all. These approaches are called ‘direct’ and ‘indirect’

descent respectively in [30]; I call them ‘algebra-based’ and ‘invariant-theory-

based’, which are more unwieldy terms but more descriptive.

The reduction and minimisation theories of the coverings are obviously es-

sential for the invariant-theory-based method. They are also required for the

algebra-based method, since the constructed n-coverings are often very far from

minimal and very far from reduced, and so minimisation and reduction are

needed to make the coefficients small enough for it to be feasible to find points

on the coverings by exhaustive search.

The invariant-theory-based approach for 2-descents was introduced by Birch

and Swinnerton-Dyer in the early sixties in [5]; but with the computers and

algorithms of that epoch, it was infeasible to perform the explicit calculations

in the class and unit groups of number fields required for the algebra-based

approach. Whilst the advent of Buchmann’s algorithm [11], as well-described

in [15] and as implemented in such packages as pari and magma, has made

the algebra-based approach more practical, and n = 3 and higher descents

feasible, it was still true at the time of writing that nearly all descents performed

are 2-descents, and nearly all of those are invariant-theory-based 2-descents

performed with Cremona’s program mwrank [19], an implementation of the idea

in [5] which has been refined over more than a decade and which, by clever

sieving techniques, manages to work very quickly on curves with discriminant

16



up to 1014 or so. Less refined versions of Cremona’s algorithms are used in

magma’s rank-determination routines.

For the invariant-theory 2-descent, we note that every C : y2 = f(x) with

f quartic has an associated elliptic curve JacC : y2 = x3 − 27Ix − 27J where

I and J are the invariants of f (see appendix B for the details). A careful 2-

and 3-adic analysis, introduced in [5] with sketched proofs, described in great

detail both over Q and over quadratic number fields in [58], and significantly

refined in [71], tells us that, for appropriate definitions of ‘minimal’, there are

only finitely many I and J values (one or two for Q, between one and four for

a quadratic number field) which can arise for a minimal quartic associated to a

given elliptic curve – the refinement in [71] allows the use of fewer (I, J) pairs

for some curves than [5] would have needed. We can then use the reduction

theory for that field to find bounds on the possible coefficients of a minimal

quartic with given I and J .

The method works over any field for which the bounds can be constructed;

the reduction-theory bounds for the coefficients of a quartic with given I and

J over Q date back to Hermite, though they were improved by Birch and

Swinnerton-Dyer in [5], and further improved by Cremona in [23]. Real quadratic

fields of class number 1 were handled in [58], and section 4.5.2 of this document

contains the reduction-theory construction of the bounds for Z[i].

The algebra-based approach to two-descent over number fields is outlined in

section 2.2.1: a good reference is Simon’s [66], and he has an implementation,

relying on Cohen’s work [16] on computing the class and unit groups of number

fields defined by relative extensions, as implemented in pari [2]. That paper

uses a small amount of minimisation and no reduction, and indeed states “I do

not claim that these choices will always lead to a Q′ with small coefficients”.

The increasing number of coefficients defining an n-covering make the invariant-

theory approach increasingly impractical. For n = 3, the paper [30] constructs

a search region for the coefficients of a ternary cubic form with given S and

T -invariants which is of volume |∆|13/6 (where ∆ = T 2 + 64S3), and moreover

fails to prove that there are only finitely many pairs of invariants to consider for

a given elliptic curve. Their bounds seem fairly weak, since they bound all the

coefficients simultaneously rather than allowing the bounds for one coefficient

to depend on the value of all earlier ones; simply calculating the last two coeffi-

cients by solving the equations giving the S and T invariants would reduce the

volume to |∆|4/3. For n > 3 I have seen no references to an invariant-theory

approach.

The algebra-based approach for n = 3 was made practical in 2003 after

several years of work by Stoll, Cremona, O’Neil, Fisher and others (see [26] and

[27]).
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For prime n, Schaefer, Stoll and others have reduced this task to a distinctly

non-trivial problem in algebraic number theory [56]: to begin we have to com-

pute the class and unit group of the p-division field, which is a field extension

normally of degree p2 − 1. In practice I do not believe that a general 5- or

higher descent has ever been performed, though Tom Fisher has handled the

case where two curves are related by an n-isogeny and one of them has a rational

n-torsion point, by an approach needing no field extensions.

1.6 Some notation for algebras

We will quite often want to take a square-free monic polynomial f ∈ K[x] and

consider the algebra L = K[x]/(f). If f is irreducible, this is a number field, and

we have the standard norm function NL/K . If not, it is a direct sum L1⊕. . .⊕Lr

of number fields whose degrees sum to deg f ; we write its elements as [x1, . . . , xr]

with xi ∈ Li, and define

NL/K([x1, . . . , xn]) =

n
∏

i=1

NLi/K(xi).

If f is irreducible, let α be one of its roots in L; if not, for each i let αi be

one of its roots in Li. We will consider the embedding K → L which sends x

to [x − α1, . . . , x − αr], and write it as x − α even if L is not just a number

field generated by α; for example, if f(x) = (x2 − 3)(x − 4)(x − 5), we have

L = Q[
√

3] ⊕ Q ⊕ Q, with α1 =
√

3, α2 = 4, α3 = 5, and 6 − α would be

[6−
√

3, 2, 1]. Since we often want the image of x−α in L×/(L×)2, we will need

to modify some components if x = αi; the precise approach needed is given in

the theorems of section 2.2.4, but the idea is to replace αi − αi with f ′(αi) if it

should happen to occur.

If K = Q, we will sometimes write Lp for Qp[x]/(f); since f may be irre-

ducible over Q and not over Qp, this may be a direct sum of extension fields of

Qp, written Lp1
⊕ . . .⊕Lpr with Lpi generated by αpi , even when L is a number

field. If L were not a number field, the Li each decompose separately into a

direct sum of extension fields, so there is a natural map from each Li into some

subset of the Lpj , and these subsets are disjoint as i runs from 1 to r. Compos-

ing these natural maps gives us a natural map L→ Lp. A similar construction

holds where K = Kp, a local field not equal to Qp, and in this case we call the

localised algebra Lp.

If we have a number field N and a set of primes S ∈ SpecON , it is possible

to construct a finite subgroup N(S, 2) < N×/(N×)2 consisting of all elements

whose valuations at the prime ideals outside S are even; indeed, magma has an
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in-built function pSelmerGroup to compute generators for N(S, 2). If N has

class number 1, we have N(S, 2) generated by the generators for the unit group

of N and the elements generating the prime ideals of S; otherwise the situation

is slightly more complicated. Hence computing N(S, 2) requires knowledge of

the class and unit groups of N .

If instead we have our algebra L and an element D ∈ K, we can define

Si = {p ∈ SpecOLi : p|DOLi}

and write

L(D; 2) =

r
⊕

i=1

Li(Si, 2);

the semi-colon indicates that D is to be an element of K rather than a set of

places of K.

1.7 Checking local solubility

The result of an n-descent on an elliptic curve E, is a finite set of inequivalent

n-coverings C1 . . . Cr, each equipped with a map jCi : Ci → E. Ideally we want

to know which of these curves have points over K and correspond to elements of

E(K)/nE(K); at the very least, we want to find the Selmer group Sn consisting

of curves with points everywhere locally.

There are two approaches to this local solubility in the literature. When the

invariant-theory two-descent is used, the two-coverings are produced directly,

and then Birch and Swinnerton-Dyer [5], and later Cremona [19] and Siksek

[62], have approaches which check directly whether f(x, z) = y2 has a solution

in Qp. For n = 4, the paper [51] uses a similar approach for intersections of

two quadrics, but this requires effort of at least O(p3) to show that such an

intersection has no p-adic point.

The other approach, which was mentioned to me by Stoll, takes advantage

of the association between n-coverings and elements of the algebra L of the

previous section. For the two-descent case, for instance, we have for each place

p of K the diagram

E(K)/2E(K)
�

� µ //

��

L×/(L×)2

��
E(Kp)/2E(Kp)

�

� µp // L×
p /(L

×
p )2

where L and Lp are an algebra of the type described in section 1.6 and its

localisation at p, and the µ and µp maps are the modified “x−α” maps of that
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section.

Generally, it is not too difficult to find points on E(Kp), and it is possible

to compute in advance (by the method of section 2.4.1) the size of the image

Rp = µp(E(Kp)) in Lp, which turns out to be fairly small. So you can generate

points on E(Kp), compute their images in Lp, and continue until you have filled

out Rp entirely. We can then reject any element of L whose image in Lp does

not land in Rp.

A similar procedure, though with slightly different µ and slightly different

quotients on the left-hand side of the diagram, is the local-solubility process

used for the second descent presented in the next chapter, and much of the

work in sections 2.2 through 2.4 revolves around computing the exact size of

µp(C(Qp)); the relevant diagram appears at the start of section 2.4.
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Chapter 2

Four-descent

2.1 Outline of the argument

We begin with a two-covering C : y2 = f(x), where f ∈ K[x] is a quartic

polynomial; these two-coverings will nearly always have been obtained as a two-

descendent of some elliptic curve E. We will assume that f is irreducible over

K; this will be the case if E(K)[2] is trivial. The aim of all our computation

will be to find x ∈ Q with f(x) a square, and hence a point on C which lifts by

the map of appendix A to one on E. We follow fairly closely the procedure in

[51]; I will point out where the procedure here is refined from theirs.

We find an algebraic condition, such that the possible solutions to y2 = f(x)

are divided into a finite number of classes, each corresponding to a coset

ε = φ(x) = (x− α)
(

K×(L×)2
)

of the number field L defined in section 1.6, where α is the root of f in L defined

there. Let M = L×/K×(L×)2 be the group of such cosets. The set of these ε is

called D
alg
4 , and to each ε we can associate an intersection Hε of two quadrics

over P3(K).

The 4-Selmer group S4 – which contains E(K) together with any elements

of order 2 or 4 in XK(E) – consists of those intersections of quadrics which

have points everywhere locally. The procedure in [51] handled local solvability

without using L, by using Hensel’s lemma on the Hε; this often broke down. We

instead use the local-images technique of section 1.7, with some modifications

described in section 2.4.

Let D4 be the set of everywhere locally solvable Hε. The elements of D4

correspond to elements H ∈ S4 for which 2H = C. Their number will be zero if

C ∈ S2 is not twice an element of S4, which happens if C represents an element
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of X of exact order two. If there are no elements of order four or more in

X[2∞], the size of D4 will be 2rank E−1: the −1 arises because each element

of D4 corresponds to two elements of S4, since there is scope to choose the

sign of y arbitrarily in jH : D4 → (x, y) ∈ C. We perform minimisation and

reduction at this point, aiming to obtain quadrics with small discriminant and

small coefficients; these are newly-developed procedures not used in [51].

Nor did [51] describe any efficient procedure for finding points on the H.

In this work, by parametrizing one quadric and substituting into the other, we

convert an intersection of quadrics into a single ternary quartic F , and seek

a point on that using a very efficient two-dimensional sieving procedure. A

point on F then lifts to one on each of the quadrics in H, and then to one

on y2 = f(x, z), and further up to one on the elliptic curve: for each of these

liftings, the x co-ordinate is given by a quadratic function of the co-ordinates on

the previous model. However, the map ψ : F → H has degree one, and so does

not contribute a factor two to the height of points. Instead, we find, writing

ψ([x, y, z]) = [a, b, c, d], that GCD(a, b, c, d) is large, and dividing it out gives a

point on H with co-ordinates about the size of those of the point on F .

2.2 The algebraic stage

2.2.1 Recap of the two-descent for elliptic curves

Let E be an elliptic curve

E : y2 = f(x) = x3 + a4x+ a6

defined over a number field K; we assume that f is irreducible over K. Let L

be the number field K(x)/(f(x)), and let α be the root of f in L. Define the

homomorphism µ : E(K)→ L×/(L×)2 by

µ(x, y) =







(x − α)(L×)2 x 6= α

f ′(α)(L×)2 x = α
.

Since µ is a group homomorphism into (L×)2, its kernel clearly contains

2E(K): we can prove (eg lemma 15.2 of [13]) that kerµ = 2E(K), so we have

E(K)/2E(K)
�

� µ // L×/(L×)2 .

If (x, y) ∈ E(K) then NL(x−α) = f(x) = y2, so the points of E(K) correspond

to elements of square norm in L×/(L×)2. In fact, for K a number field, we can

guarantee – this result is crucial in proving the weak Mordell-Weil theorem –

22



that they lie in a finite subset L2(S, 2) of a finite set L(S, 2) of the type described

in section 1.6:

L2(S, 2) =
{

t ∈ L(S, 2) | NL(t) ∈ (K×)2
}

.

The standard proof of the weak Mordell-Weil theorem – for example Propo-

sition 1.5b in chapter 8 of [63] – takes

S = {p : p|2∆OK}

where ∆ is the discriminant of the polynomial f , though Simon [66] has shown

that we need only consider primes dividing f ′(α)OK and whose square divides

∆OK .

Whichever S we choose, magma can compute generators for L(S, 2), and it is

a simple matter of linear algebra to compute from them generators for L2(S, 2).

This group L2(S, 2) has the 2-Selmer group of E(K) as a subgroup; however, it

also contains elements which arise from two-coverings that are not everywhere

locally solvable. We remove these by the method of section 1.7: for each place p

of K that supports disc f , we construct the image Rp in the localised algebra Lp

of E(Kp), and discard any elements of L2(S, 2) whose images in Lp lie outside

Rp.

The result of this filtration is a set L′
2 of elements of L×; the only remaining

obstruction is solubility at the infinite prime, which could be handled here, but

which we instead handle while we convert L′
2 into a set of explicit two-coverings

C : y2 = g(x), g quartic, representatives of the 2-Selmer group of E(K).

The conversion from elements of L× to explicit two-coverings constructs the

two-coverings as the obstructions to writing ` ∈ L× in the form (x − α)r2 for

some r ∈ L× – if ` is of that form, the x is the X-coordinate of some point on

E.

Given an element ` = `0 + `1α + `2α
2 ∈ L2(S, 2), write a general r as

r = r0 + r1α+ r2α
2, and multiply out; considering the coefficients of 1, α, α2 in

the result gives us three homogenous ternary quadratic equations

Q0(r0, r1, r2) = x (2.1)

Q1(r0, r1, r2) = −1 (2.2)

Q2(r0, r1, r2) = 0 (2.3)

so finding x requires us to find some simultaneous solution to (2.2) and (2.3),

and substitute back into (2.1). Since we know that our ` corresponds to a two-

covering soluble at all primes p, the only way in which no solution can exist

23



is if Q2 is positive or negative definite, or Q1 positive definite; these situations

correspond to ` representing a two-covering not soluble at the infinite prime.

We note that there exist many algorithms which, given a a homogenous

ternary quadratic form, will determine a parametric solution

r0 = f0(x, y), r1 = f1(x, y), r2 = f2(x, y)

with fi themselves binary quadratic forms, or to show that no solution exists.

The earliest such algorithms were given by Legendre, but there has been a recent

push to reduce the amount of factorisation required, leading to the algorithms of

Cremona-Rusin [24] and Simon [67]. The latter requires only the factorisation of

the determinant of the 3× 3 matrix defining Q2, which is very convenient since

this determinant is roughly NL/Q(`), whilst the coefficients can be enormous in

the case of complicated fundamental units.

If there is no solution, we discard the element of L2(S, 2) and continue to the

next. Otherwise, substituting back into (2.2) gives a quartic equation g(x, y) =

−1, and, since multiplying r by any element of Q would give just as valid a

solution, we could deal instead with the equation g(x, y) = −z2. Relabelling,

we find we have associated a two-covering C` : y2 = f(x, z) (f quartic) with

each of the elements ` ∈ L2(S, 2) that has equation (2.3) solvable; this set of

two-coverings contains one representative for each element of the 2-Selmer group

of E(K), and in particular counting them gives us the size of S2(EK). Notice

that we have thrown away the original ` at this stage; [66] shows that the two-

coverings we obtain by this circuitous process are indeed two-coverings of our

original elliptic curve E.

We minimise and reduce these two-coverings, since (particularly when the

unit group of L has large generators) they may have very large coefficients and

many spurious primes dividing their discriminants. This done, we search for K-

rational points on all of them; if we find one on some C` we can apply the syzygy

map jC`→E to it to obtain a point in E(K), and restrict the rest of our searching

to the non-trivial quotient of D2/ 〈C`〉. If not, we record the two-covering as a

fit subject for four-descent.

2.2.2 The action of E on elements of S2

Let E be an elliptic curve defined over some field K (with group operation +E

and base point 0E) such that E(K)[2] is trivial. Let C : y2 = f(x) (f ∈ K[x]

with deg f = 4) be one of its two-descendents; we learn from [22] that all non-

trivial two-descendents of a curve without 2-torsion are of the form y2 = f(x)

with f irreducible. The projective closure of C has one singular point, at infinity;

this is a node whose branches correspond to the points P∞± of section 1.3.1.
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As usual, we use the same letter C to denote a smooth model for the projective

completion of the affine curve y2 = f(x). C has genus 1.

The material presented in this subsection is to a large extent a recap of

material from section 10.3 of [63], but I collect it here for ease of reference.

For any extension K1 of K (including K1 = K), if we have a point P ∈
C(K1), we can obtain an isomorphism (defined over K1) θP : C → E with

θP (C1 ⊕P C2) = θP (C1) +E θP (C2)

and θP (P ) = 0E ; the construction is described very explicitly in [18] and given

in appendix A.1. If P and Q are distinct points on C, the maps θP and θQ are

related by

θQ(R) = θP (R)− θP (Q). (2.4)

The definition of “principal homogeneous space” indicates that there is an

action of E on C: given P ∈ E and Q ∈ C, let D be some point in C(K) and

define an action

Definition 2.2.1. P �Q = θ−1
D (P +E θD(Q))

This action is independent of the choice of D : we have by (2.4)

θD′(R) = θD(R)− θD(D′), θ−1
D′ (P ) = θ−1

D (P + θD(D′))

so θ−1
D′ (P +E θD′(Q)) = θ−1

D (P +E θD(Q)).

There is an obvious associated operation

Definition 2.2.2. If C1, C2 ∈ C, define

C1 � C2 = θD(C1)−E θD(C2).

This is an element of E, and clearly by (2.4) independent of D.

Lemma 2.2.1. � and �, defined as above, are K-rational maps.

Proof. We need to show that, for all σ ∈ Gal(K/K), P σ
�Qσ = (P �Q)σ, and

likewise for �.

From proposition 4.3 of Cremona’s paper [22], we have that, for each σ ∈
Gal(K/K), there is a Tσ ∈ E[2] with θσ

D−θD = Tσ. Since (θD(R))σ−θD(Rσ) =

θσ
D(Rσ)− θD(Rσ), it is also equal to Tσ, and so (θD(R))σ = θD(Rσ) +E Tσ.

Let R = P �Q, so θD(R) = P +E θD(Q). Then θσ
D(Rσ) = P σ +E θσ

D(Qσ),

since the addition operation on E is defined over K and remains unchanged

under the action of σ.

Hence

θD(Rσ) +E Tσ = P σ +E θD(Qσ) +E Tσ
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and, subtracting Tσ from both sides and applying θ−1
D , we have

Rσ = θ−1
D (P σ +E θD(Qσ)).

So indeed (P �Q)σ = P σ
�Qσ.

To prove the result for � is simpler:

(C1 � C2)
σ = (θD(C1)−E θD(C2))

σ

= θσ
D(Cσ

1 )−E θσ
D(Cσ

2 )

= θD(Cσ
1 ) +E Tσ −E (θD(Cσ

2 ) +E Tσ)

= θD(Cσ
1 )− θD(Cσ

2 )

= Cσ
1 � Cσ

2

Since (Q2 � Q1) � Q1 = Q2, and P1 � Q = P2 � Q ⇐⇒ P1 = P2, it is

clear that E(K) acts simply transitively on C(K); thus, given any base point

Q0 ∈ C(K), we have a bijection C(K)←→ E(K) by P �Q0 ←→ P .

Let H be a subgroup of E(K) – for example, E(K). The points of C(K)

clearly split up into H-orbits of the form

H �Q0 = {P �Q0 : P ∈ H} .

Since � is defined overK, all the points in an E(K)-orbit of C(K) will be defined

overK iff one of them is, and so C(K) is a union of complete E(K)-orbits. Since

� is also defined over K, and C1 �C2 ∈ E(K) if C1 and C2 are in C(K), C(K)

must either be empty or consist of a single E(K)-orbit. In either case, E(K)

acts simply transitively on C(K), and, given a subgroup H1 < E(K), we can

split C(K) into orbits within which C1 � C2 ∈ H1.

Lemma 2.2.2. LetH1 be a subgroup ofE(K) of finite index, and let ‖C(K)/H1‖
be the number of H1-orbits on C(K). If C(K) is non-empty, we have

‖C(K)/H1‖ = ‖E(K)/H1‖ = [E(K) : H1].

Proof. C(K) is a single E(K)-orbit, and so will be a union of H1-orbits; the

number of such orbits is precisely the index of H1 in E(K).

2.2.3 What if we adjoin a root?

Let C : y2 = f(x), with f an irreducible quartic polynomial defined over K, be

a two-covering of the elliptic curve E. If we adjoin a root α of f to K, getting
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the field Kα, we clearly have a point Pα = (α, 0) ∈ C(Kα). Let θα = θPα be

obtained by the construction of the previous subsection, and let ξ : C → E be

the syzygy map (defined over K, and called jC→E in section 1.3) described in

appendix A.2. We observe, if necessary by computer algebra (or see [22]), that

ξ(P ) = 2θα(P ), giving the diagram

E
×2 // E

C
ξ

??~~~~~~~~
θα

OO

If P = (x, y) ∈ C, write P ′ = (x,−y); so P
′

α = Pα. Recall from section 1.3.1

that divisors of the form (P ) + (P ′) are all equivalent to one another; hence

they are all equivalent to 2(Pα), and we have P ⊕α P
′ = Pα (the identity of

the group [C(K), Pα,⊕α]) for all P ; the three non-trivial points of order 2 on

[C(K), Pα,⊕α] are the (β, 0), where β runs through the roots of f not equal to

α.

If C(K) 6= ∅, we can pick P0 ∈ C(K), and consider the group [C(K), P0,⊕0]

whose operation is defined over K. In this group, we have P ⊕0 P
′ = P ′

0 for all

P ∈ C(K); in particular, [2]0Pα = P ′
0.

Lemma 2.2.3. Let 2C(K) be the set

{Q⊕0 Q : Q ∈ C(K)} .

Then P ′
0 ∈ 2C(K) iff g(x) has a root in K.

Proof. If g(x) has a root γ ∈ K, then we can take Q = (γ, 0); then Q′ = Q and

Q⊕0 Q
′ = P ′

0. For the other direction, we have

Q⊕0 Q = P ′
0 = Q⊕0 Q

′,

and so Q′ = Q; therefore the y co-ordinate of Q is zero, and Q = (x, 0) ∈ C(K)

whence g(x) = 0.

Lemma 2.2.4. If C0 is any point in C(K), then θα(C(K)) = E(K)+EQ0 where

Q0 = θα(C0).

Proof. Let C1 ∈ C(K); we have P = C1 � C0 ∈ E(K). Then θα(C1) = θα(P �

C0) = P +E θα(C0) by definition of �.

In the remainder of this section, we want to find properties of C(K) which

we can deduce from known properties of E(K) and C(Kα), without having to
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use an explicit point in C(K) since the whole purpose of this work is to let us

use the four-descent to find such a point.

So: let the subgroup G of [C(Kα), Pα,⊕α] be defined as

G = θ−1
α (E(K)).

Lemma 2.2.5. Suppose C(K) is non-empty, and contains the point P0. Then

C(K) = G⊕α P0, the coset of G in [C(Kα), Pα,⊕α] containing P0.

Proof. Recall from lemma 2.2.4 that θα(C(K)) = E(K) +E Q0, where Q0 =

θα(P0). So, if P1 ∈ C(K), we have

θα(P1)− θα(P0) ∈ E(K) =⇒ θα(P1 	α P0) ∈ E(K)

=⇒ P1 	α P0 ∈ G
=⇒ P1 ∈ G⊕α P0

Conversely, if P1 ∈ C(K), we have

P1 ∈ G⊕α P0 =⇒ θα(P1)− θα(P0) ∈ E(K)

=⇒ θ(P1) ∈ Q0 ⊕ θ(E(K)

=⇒ P1 ∈ θ−1(Q0 ⊕E(K)) = C(K)

Lemma 2.2.6. The map ψP0
: [C(K), P0,⊕0]→ E(K) defined by P → θα(P	α

P0) = θα(P )−EQ0 (whereQ0 = θα(P0)) is a group isomorphism from [C(K), P0,⊕0]

to E(K).

Proof. We know that the map G → C(K) given by P → P ⊕α P0 is a group

isomorphism from G to [C(K), P0,⊕0], by working directly with the divisors as

in section 1.3.1:

((P1 ⊕α P0)⊕0 (P2 ⊕α P0)) ∼ (P1 ⊕α P0) + (P2 ⊕α P0)− (P0)

∼ ((P1) + (P0)− (Pα)) + ((P2) + (P0)− (Pα))− (P0)

∼ (P1) + (P2) + (P0)− 2(Pα)

∼ (P1 ⊕α P2) + (P0)− (Pα)

= ((P1 ⊕α P2)⊕α P0)
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Under this isomorphism, we have [C(K), Pα] ' [C(K), P0]. Restricting this

map to G gives us, by lemma 2.2.5, an isomorphism G ' [C(K), P0]; composing

with θα, we get [C(K), P0] ' E(K) via the map claimed in the lemma.

Lemma 2.2.7. The homogenous-space action of P ∈ E(K) on Q ∈ C(K)

defined in definition 2.2.1 is given by

P �Q = Q⊕0 ψ
−1
P0

(P )

Proof. We have ψP0
(R) = θα(R	α P0), so ψ−1

P0
(R) = θ−1

α (R)⊕α P0. Hence

Q⊕0 ψ
−1
P0

(P ) = Q⊕0

[

θ−1
α (P )⊕α P0

]

=
[

Q⊕0 θ
−1
α (P )

]

⊕α P0

But

θ0(Q⊕0

[

θ−1
α (P )⊕α P0

]

) = θ0(Q) +E θ0(θ
−1
α (P )⊕α P0);

and by equation (2.4), the latter term is equal to P . And θ0(P � Q) = P ⊕0

θ0(Q) by definition 2.2.1; so θ0(P � Q) = θ0(Q ⊕0 ψ
−1
P0

(P )) and, since θ0 is

an isomorphism, we can apply its inverse to both sides and get the desired

result.

If H is the subgroup of E(K) generated by 2E(K) and θ0(P
−
0 ), it is imme-

diate that
∥

∥

∥

∥

∥

[C(K), P0,⊕0]
〈

2C(K), P−
0

〉

∥

∥

∥

∥

∥

= ‖C(K)/H‖ = ‖E(K)/H‖

where ‖C(K)/H‖ is a count of H-orbits whilst ‖E(K)/H‖ is the size of a quo-

tient subgroup. We now want to know when P−
0 lies in 2C(K), to tell whether

this subgroupH is equal to 2E(K) or is twice the size. We do this by an implicit

invocation of lemma 2.2.3.

Lemma 2.2.8. Let C : y2 = f(x) = ax4 + bx3 + cx2 + dx+ e be a two-covering

defined over K. Let g(x) = x3 − 3Ix+ J be the associated cubic of f(x), and

let g1(x) = −27g(−x
3 ) so E : y2 = g1(x) is the elliptic curve associated to C by

the syzygy map.

Let Kα be obtained by adjoining one root of f to K. Then the embedding

E(K)/2E(K) // E(Kα)/2E(Kα)

is injective if C(K) = ∅, and has a kernel of size two (generated by ξ(Q) where

Q ∈ C(K)) otherwise.
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That is, E(K) ∩ 2E(Kα) = 2E(K) if C(K) = ∅, and otherwise is equal to

2E(K) + 〈ξ(Q)〉

Proof. P ∈ E(K) represents an element of the kernel of the embedding iff

P ∈ E(K) ∩ 2E(Kα). The proof uses the two-descent machinery of section

2.2.1; let L = K(β) where β is a root of the cubic g1(x) (and so the root of g(x)

is β′ = −β/3), and let Lα = L(α). Recall from [22] the field diagram

Lα

Kα

[Lα:Kα]=3
=={{{{{{{{

L

[Lα:L]=4
``@@@@@@@@

K

[L:K]=3

>>}}}}}}}}[Kα:K]=4

aaCCCCCCCC

where there is a unique intermediate quadratic field L < M < Lα, M = L(
√
w),

where w will be defined below.

Lemma 2.2.9. The map L×/(L×)2 → L×
α /(L

×
α )2 has a kernel of order precisely

two

Proof. We have the unique intermediate quadratic fieldM ; since it is a quadratic

extension, we have M = L(
√
w) for some w ∈ L×/(L×)2. So w ∈ L is a non-

trivial element of the kernel.

Let κ =
√
w, and write an arbitrary element of M as a+ bκ.

(a+ bκ)2 = a2 + 2abκ+ b2κ2

= (a2 + b2w) + 2abκ

so, if we require (a+ bκ)2 ∈ L×, we need ab = 0. If b = 0 then (a+ bκ)2 = a2 ∈
(L×)2; if a = 0 then (a+ bκ)2 = b2w ∈ w(L×)2. So w is unique.

We have the diagram

E(K)/2E(K) �

� (x,y)→x−β //

��

L×/(L×)2

��
E(Kα)/2E(Kα)

�

� (x,y)→x−β // L×
α /(L

×
α )2

By lemma 2.2.9, the right-hand map has a kernel of order exactly two, with

the non-trivial element represented by, say, w ∈ L×. The left-hand map thus

has a kernel of order one or two, depending on whether w is or is not in the

image of E(K).
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But, combining that lemma and the first part of proposition 3.2 of [22], we

have that the element w generating M is given absolutely explicitly as w =
1
3 (4aβ′ + 3b2− 8ac), and that this element lies in the image of E(K) iff C(K) is

non-empty.

Lemma 2.2.10. Let P0 = (x, y), y 6= 0 be any point on a two-covering C(K) of

the elliptic curve E. From P0 we obtain a second point P−
0 = (x,−y), a group

law ⊕0 and a map θ0 : C → E; let Pα be the point (α, 0) that we know and love,

giving us another group law ⊕α and a map θα : C → E, and recall the syzygy

map ξ : C → E with ξ = [2]θα.

Then the subgroup H of E(Kα) defined as 2E(K) +
〈

θ0(P
−
0 )
〉

is equal to

E(K) ∩ 2E(Kα); in particular, it does not depend on P0.

Proof. We have P0 ⊕α P
−
0 = Pα, and so θα(P−

0 ) = −θα(P0). And so

θ0(P
−
0 ) = θα(P−

0 	α P0)

= θα((	αP0)	α P0)

= −2θα(P0)

= −ξ(P0) ∈ E(K)

So H = 2E(K) +
〈

θ0(P
−
0 )
〉

is the same as 2E(K) + 〈ξ(P0)〉; by lemma

2.2.8, we know that E(K) ∩ 2E(Kα) = 2E(K) + ξ(P0), and so we have shown

H = E(K) ∩ 2E(Kα).

2.2.4 The Main Theorem for two-coverings

Recall the following theorem of Cassels ([14], pp 35–39):

Theorem 2.2.1. Consider the genus-1 curve C : Y 2 = f(X), with f a monic

quartic polynomial defined over a field K with non-zero discriminant. C has two

points P∞± at infinity. Let G = [C(K), P∞+ ,⊕∞+ ] be the Mordell-Weil group

using P∞+ as the origin. Let L be the algebra K[X ]/(f(X)), and let M denote

the quotient L×/K×(L×)2.

L is a direct sum of r number fields Li, where Li is generated by αi;

L×
i /(L

×
i )2 is a direct sum of quotientsMi = L×

i /(L
×
i )2 arising from such number

fields, and M =
⊕

Mi/K
×
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Define µi : G→Mi by

µi(x, y) = x− αi (y 6= 0)

µi(P∞±) = 1

µi(αi, 0) = g′(αi)

and define µ : G → M by g → [µ1(g), . . . , µr(g)]; this is the modified “x − α”

map referred to in section 1.6.

Then µ is a group homomorphism, whose kernel is the subgroup generated

by 2C(K) and P∞− ; by the same argument as section 2.2.1, imµ ⊂ N , where

N <M is the subgroup of elements of M with NM/K ∈ (K×)2.

As an obvious corollary, we have that the image of µ is a subgroup of M of

order [C(K) : 2C(K) + 〈P∞−〉].
Note that, if C : Y 2 = f(X) where the coefficient of X4 in f(X) is a2

1

(a1 ∈ K), then C ∼= C1 where C1 : Y 2 = f1(X) and f1(X) = f(X)/a2
1 by the

map (x, y) → (x, y/a1). The αi will be the same for L = K[x]/(f(x)) and

L1 = K[x]/(f1(x)), so the theorem holds for these more general curves.

Next, we consider a two-covering C given by a quartic without any special

condition on the leading coefficient, but where we assume knowledge of a point

on C(K):

Theorem 2.2.2. Let C : y2 = f(x) where f ∈ K[x] is a quartic; let P0 =

(x0, y0) ∈ C(K) so we consider the Mordell-Weil group [C(K), P0,⊕0]. As before,

let L = K[x]/(f(x)) and M = L×/K×(L×)2, with L =
⊕

Li and αi generating

Li.

Define µi : C(K)→ Li at the point P = (x, y) by

µi(P ) =































1 P = P0, P
′
0

x0 − αi P = P∞±

f ′(αi) P = (αi, 0)

x−αi

x0−αi
otherwise

(P∞± will only be in C(K) if f happened to have leading coefficient a square),

and define µ : G→M as g → [µ1(g), . . . , µr(g)] as in the previous theorem.

Then µ is a group homomorphism from [C(K), P0,⊕0] to M , whose image

lies in the subgroup

N =
{

ε ∈M |NA/K(ε) ∈ (K×)2
}

,

whose kernel is the subgroup of [C(K), P0,⊕0] generated by 2C(K) and P0
′, and
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whose image in N has size [C(K) : 2C(K) + 〈P ′
0〉].

Proof. Essentially, we construct a birational map φ from C to a model C2 satis-

fying the conditions of theorem 2.2.1, and compose the µ of the original theorem

with the φ to get the µ of the new theorem.

We have P0 = (x0, y0) ∈ C(K). Let g(t) = t4f( 1
t +x0), defining a polynomial

with square leading coefficient, and let C2 : y2 = g(t). LetQ∞± be the two points

at infinity on C2.
Now consider the map φ : C → C2 given by

φ(x, y) =
(

(x− x0)
−1, (x− x0)

−2y
)

; φ−1(x2, y2) =
(

x−1
2 + x0, x

−2
2 y2

)

;

this is constructed by a translation to make the x co-ordinate of P0 equal to zero,

which makes the constant term a square, followed by an inversion to move the

square term to the x4 position. It is a bijection between C(K) and C2(K), except

that φ(P0) = Q∞+ and φ(P ′
0) = Q∞− ; indeed, it is a birational isomorphism

[C, P0,⊕0]←→ [C2, P∞+ ,⊕2]

defined over K and correctly handling the group law.

We now show that the definition of µ in theorem 2.2.2 is the composition

of φ : C → C2 with the map µ2 : C2(K) → L obtained when we apply theorem

2.2.1 for the curve C2, and hence the image and kernel of µ will be the images

under φ of the image and kernel of µ2 for the other curve.

Away from the special cases, we have

φ(x, y) =

(

1

x− x0
,

y

(x− x0)2

)

.

The generic roots α
(2)
i of the quartic defining C2 will be (αi − x0)

−1 in the L of

the current theorem, so the image µ2(φ(x, y)) is

1

x− x0
− 1

αi − x0
=

αi − x
(x− x0)(αi − x0)

≡ x− αi

x0 − αi

since x− x0 ∈ K×.

For the special cases, we have

1. The points P0 and P ′
0 map to the points at infinity on C2, which are sent

to 1 by µ2

2. The points at infinity (0,±√a) are sent to

0− α(2)
i =

1

x0 − αi
≡ x0 − αi (mod (L×)2)
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3. If g(αi) = 0, then P1 = (αi, 0) ∈ C maps to Q1 = (α
(2)
i , 0) ∈ C2, and

µ2(Q1) = g′(α
(2)
i ), but, since g(t) = t4f(t−1 + x0), we have

g′(t) = 4t3f(t−1 + x0)− t2f ′(t−1 + x0).

And so

g′(α(2)
i ) = −(α

(2)
i )2f ′(αi) ≡ f ′(α) (mod K×(L×)2).

The result about the kernel of µ follows at once from theorem 2.2.1; for

the image, we have NL/K(x − α) = y2/a, NL/K(x0 − α) = y2
0/a, and so

NL/K(µ(x, y)) = (y/y0)
2 ∈ (K×)2. If the points at infinity are rational, the

leading coefficient a is itself in (K×)2, say a = a2
0; so

N(µ(P∞±)) = N(x0 − α) = y2
0/a = y2

0/a
2
0 ∈ (K×)2.

The final task is to remove the dependency on the point P0. We can already

show using the results of subsection 2.2.3 that the size of the image µ(C(K))

does not depend on P0; this size is [C(K) : 2C(K)+ 〈P ′
0〉], which by lemma 2.2.3

is equal to

v[(C(K), P0) : 2(C(K), P0)]

with

v =







1 f(x) has a root in K

1
2 otherwise

and, applying lemma 2.2.6, the order of the image is equal to [E(K) : 2E(K) +

θα(P0)], which we know by lemma 2.2.8 to equal v[E(K) : 2E(K)]. Write

Q0 = θα(P0).

Summarising, at the moment we have a subgroup X < N , and a bijection

C(K)

2E(K) + 〈Q0〉
−→ X

given as

(x, y)→ µ ((x, y)) =
x− α
x0 − α

.

We now multiply through by x0 − α to get

Theorem 2.2.3 (The Main Theorem). Let C : ay2 = f(x) = x4 + bx3 +

cx2 + dx + e be a two-covering, defined over a field K, of the elliptic curve

E : y2 = x3 − 27I(f)x− 27J(f).
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Let L be the algebra K[x]/(f(x)), let M be the quotient L×/K×(L×)2. Let

L be written as a direct sum
⊕r

i=1 Li with the root in Li of f being αi. Let

µi : C(K) → L×
i be given by µi((x, y)) = x − αi if x 6= αi and µi((x, y)) = 1

otherwise, and let µ : C(K)→ L× be given as µ(P ) = [µ1(P ), . . . , µr(P )].

Then µ gives a bijection

C(K)

2E(K) + 〈Q0〉
←→ X ′

where X ′ is a coset of X in M , consisting of elements whose norm in (K×)2 is

equal to a.

Proof. The statement of this theorem is just that of theorem 2.2.2 with µ re-

placed by µ′ = (x0 − α)µ. So, if X is the image subgroup obtained above, X ′

will be the coset (x0 − α)X . The norm of x0 − α is equal to a modulo squares;

the elements of X had square norm, so all the elements of X ′ will have norm

equal to a modulo squares.

This Main Theorem is given without proof in [51]; the proof given here is

new.

2.3 Putting it together – explicit four-descent

over Q

In the remainder of this section, we consider four-descent only over Q, and only

for elliptic curves without rational 2-torsion; for such curves, all two-descendents

will be of the form y2 = g(x) with g irreducible. Given such a two-covering

C : y2 = g(x), we start by changing variables so we are dealing with the equation

ay2 = f(x), where f is a monic quartic whose coefficient of x3 is equal to zero:

a is the coefficient of x4 in g(x). Let ∆ = disc f .

We construct the algebra L = Q[x]/Q[x]f(x) described in 1.6; since f is

irreducible over Q, this is simply the number field K(α) obtained by adjoining

one root. We have

NL/K(x− α) = f(x)

and so the task of finding points on C is going to be a subset of the task of

finding elements of L with norms equal to a times a square.

Lemma 2 of [51] informs us that, if we have x, z with f(x/z) = ay2, and

consider the decomposition of the ideals (x − θiz)OLi of the number fields as

aib
2
i where ai is a squarefree ideal, then those prime ideals of Li dividing ai and

not lying above 2 must divide either aOLi or ∆OLi . In the language of 1.6, this
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tells us that

(x − θiz)(L
×)2 ∈ L(2a∆; 2).

The Main Theorem tells us that elements of (L×)2 differing by an factor

in Q(L×)2 are equivalent, and so we should be working in L×/Q×(L×)2. So,

having computed generators for L(2a∆; 2) we find the image ep in it of each of

the rational primes p1, . . . , pn dividing 2a∆, and take the quotient

L′ = L(2a∆; 2)/ 〈ep1
, . . . , epn〉 .

You may want to think of the object we are quotienting by as Q(2a∆; 2).

The Dirichlet S-unit theorem tells us that L(2a∆; 2) will be a 2-group with

∑

p|2a∆

‖{p : p|p}‖+ r + c− 1

generators, where r and c are the number of real and complex embeddings of

K; the definition of L′ loses one generator per rational prime dividing 2a∆, and

so it will have

nL′ = r + c− 1 +
∑

p|2a∆

(‖{p : p|p}‖ − 1)

generators. We store these generators in a list called RB.

We now use the fact that the norm of an element of (L×)2 corresponding to

a point on C will be a times a square. Consider the basis 〈`1, . . . , `n〉 that we

have constructed for L′. By factorising the norms of the `i as N(`i) =
∏

p
eij

j

and performing linear algebra on the matrix E : Eij = eij mod 2 over F2, we

obtain a basis for the group L2 of elements of L′ of square norm, and separately

a single element ξ of L′ of norm ab2 where a is the leading coefficient of the

polynomial. We store the basis elements and ξ as elements of F
NL′

2 indicating

which elements of RB should be taken into a product: the generators of RB can

be large enough that we want to delay computation of explicit products for as

long as possible. Let λ be the element in F
NL′

2 representing ξ, and MS be the

matrix whose rows are the elements in F
NL′

2 representing the generators of L2.

If we have no element with norm in a(Q×)2, then there can be no four-

descendents and we have shown that the two-covering C represented an element

of X[2]. Otherwise, write

D
alg
4 (f) =

{

ε ∈ L′(S, 2) : ∃k ∈ K : NL/K(ε) = ak2
}

for the set of “algebraic four-descendents” obtained by this process for the two-

covering y2 = f(x), and represent it by the triple (RB,MS, λ).
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2.3.1 From algebraic four-descendents to four-coverings

To convert algebraic four-descendents into four-coverings of the shape in section

1.4.1, consider an element ε ∈ L with NL/Kε = ab2. Points on C correspond

to elements of the form a+ bθ satisfying this norm condition, so we seek some

` ∈ L such that

ε`2 = a+ bθ.

Writing ` with respect to a power basis as ` =
∑3

i=0 `iθ
i, we see that

ε`2 =

3
∑

i=0

qiθ
i,

where each qi is a homogenous quadratic in the four `i; requiring q2 = q3 = 0

then gives us immediately an intersection of two P3 quadrics. The coefficients of

`i`j for i 6= j will be even by construction; so, defining A and B by q2 = xTAx

and q3 = xTBx, we get the four-covering [A,B]. And Merriman, Siksek and

Smart proved in [51] that this procedure indeed produces a four-covering whose

associated quartic is equivalent to the f(x) that the process started with; that,

after all this work, we have in fact performed a four-descent on the expected

curve.

Theorem 2.3.1 (Banded structure). The matrices A and B arising from

this construction are both of the ‘banded’ form













a1 a2 a3 a4

a2 a3 a4 a5

a3 a4 a5 a6

a4 a5 a6 a7













.

Proof. Using computer algebra, expand the θ2 and θ3 terms of a totally gen-

eral product (
∑3

i=0 biθ
i)2(
∑3

i=0 ciθ
i), over the totally general ring Q(θ)/(θ4 +

∑3
j=0 diθ

i), write them as quadratic forms in the bi, convert to the matrix no-

tation and observe the above structure.

I do not take advantage of this structure at the moment – it would make

the calculation of A and B very slightly more efficient at the price of using

significantly more ugly code – and it disappears as we minimise and reduce the

four-coverings.

It is not worth converting the ε into explicit four-coverings until local solv-

ability has been checked, if only because the triple (RB,MS, λ) where MS has

n rows is considerably more convenient to store than 2n pairs of matrices with

possibly-vast coefficients.
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2.3.2 Optimising the leading coefficient

Given a specific two-covering y2 = f0(x, z), we are at liberty to perform a change

of variables and consider the equivalent two-covering

y2 = f1(x, z) = f0(αx+ βz, γx+ δz)

for any parameters α, β, γ, δ ∈ Z with αδ − βγ = 1. The quartics f1 and f0

generate isomorphic number fields and have the same discriminant, but the

leading coefficient of f1 is equal to f(α, γ), whose prime factorisation need have

nothing in common with that of the leading coefficient of f0.

If solvability over R is our interest, we note that any two-covering possessing

real points must have an equivalent two-covering with negative leading coeffi-

cient, since real points indicate a change in sign of f0(x, 1) and thus f0(x, 1) is

sometimes negative; so we can pick a rational α
γ with f0(α, γ) < 0, construct

an element of SL2(Z) with (α γ)
T

as the first column, and transform by this.

Quartics with negative leading coefficient are positive only in a finite interval;

surprisingly often1 it’s possible to transform by an element of SL2(Z) with small

entries so as to make this finite interval very narrow, which assists the straight-

forward sieving search for points with f(x, z) = y2 by allowing very few x (often

zero, since x ∈ Z) to be considered at each z level.

Since the set S of primes used in the computation of the Selmer group

can be written as S = S∆ ∪ Sa, where S∆ contains primes dividing 2 or the

discriminant, and Sa primes dividing the leading coefficient, we can make it

smaller only by changing the leading coefficient. This was more critical when

checking local solvability was the slowest part of the four-descent, but even now

a smaller S makes the rest of the computations more convenient, particularly if

it allows us to avoid a bad prime for which the computation of the local image

by the method of section 2.4.4 takes too long. It also makes the certificate of

membership in 2X shorter if we can give an equivalent two-covering with no

algebraic four-descendents.

To investigate the effect of replacing f by an equivalent quartic, I considered

a number of two-coverings y2 = f(x) known to represent elements of X[2] for

a variety of elliptic curves, prepared a set of transformed two-coverings y2 =

f1(x) . . . y
2 = f100(x) by applying random elements of SL2(Z) (picked to have

coefficients in −50 . . .50), and examining the distribution of
∥

∥

∥D
alg
4 (fi)

∥

∥

∥.

This experiment gave evidence to justify the definitions

Definition 2.3.1. A two-covering C : y2 = f(x) is resolvable if there exists an

1In experiments with several dozen two-coverings for curves with
‚

‚X[2]
‚

‚ = 4 and small
conductor, I was always able to arrange an interval of positivity narrower than 0.01 using an
element of SL2(Z) with entries of absolute value less than fifteen
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element M ∈ SL2(Z) such that D
alg
4 (M · f) is empty.

Definition 2.3.2. Let y2 = f(x) be a two-covering. Then

min
M∈SL2(Z)

∥

∥

∥D
alg
4 (M · f)

∥

∥

∥

is a well-defined function of f , which I will call the irresolvability; if the irre-

solvability is zero, the two-covering is resolvable, and therefore insoluble.

The term “resolvable” is used because we are checking whether we can resolve

the question of the solubility of C at the algebraic stage without checking local

images.

In my sample of 753 two-coverings (three per elliptic curve from each of the

251 curves of N < 12000, rank zero and Xanal = 4 from [20]), the irresolvabili-

ties appeared to be distributed as follows – I am not sure why
∥

∥

∥D
alg
4 (M · f)

∥

∥

∥ = 1

is never observed:
‘Irresolvability’ Number of Count of lowest-

times observed observed value

0 69 20–52

2 261 2–62

4 318 6–76

8 97 11–41

16 7 15–36

32 1 28

Note that these are simply the smallest observed value of
∥

∥

∥D
alg
4 (M · f)

∥

∥

∥ – I

have no way beyond repeated experiment of estimating the irresolvability for a

given two-covering, though for the cases where the lowest-observed value was ob-

served less than 10% of the time, I re-calculated the distribution using ten times

as many random SL2(Z) matrices (picked to have coefficients in −200 . . .200 this

time) and, whilst χ2 tests suggested that the distribution did change when the

range of coefficients for the matrices was widened, the lowest-observed value

didn’t change.

We observe that, more than 43% of the time, the irresolvability is less than

the size of Xanal, meaning that, if we had a method to determine irresolvability

and replace a two-covering by an equivalent one with smaller D
alg
4 , it would

frequently serve as an improvement.

Siksek, in [61], also considers M · f for many M ; if f(α, β) = γδ2 with

γ small, he derives by quadratic-reciprocity arguments a congruence condition

on αX + βY with f(X,Y ) square. By a “duelling congruences” argument, he

can sometimes prove, particularly if f(x, 1) is positive only on a very narrow

subinterval of R, that a two-covering can have no rational points; if a proof does
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not materialise, he can construct finitely many lattices in Z2, each of reasonably

large discriminant, such that a point (X,Y ) with f(X,Y ) = Z2 must lie on one

of the lattices.

This procedure represents an entirely different approach from descent to the

goal of proving that a two-covering has no rational points, and non-trivial X

need not be an obstacle to its success (in the paper, Siksek shows that the three

two-coverings for the elliptic curve of lowest conductor with non-trivial X are

all insoluble).

However, I did not find the procedure very generally applicable; most two-

coverings that I looked at do not have f(α, β) = γδ2 for γ small when I searched

for |α|, |β| < 1000, and large γ do not produce helpful congruences – the con-

gruence conditions eliminate half the residues mod γ or mod 4γ, meaning that

we obtain roughly γ separate lattices to consider. Moreover, the duelling-

congruence argument appears to work well only when the interval over which

f(x, 1) is positive is very narrow; of course, f can often be transformed so that

it has this property. It would be interesting to consider using Elkies’ method

[33] to find points with |f(α, β)| small, and then search among those points for

ones with f(α, β) = kr2 for small |k|.

2.4 Checking p-adic solvability by local images

We wish to find an efficient way of working out which elements of D
alg
4 have

points everywhere locally, and so actually correspond to elements of S4(E). We

use the technique of chapter 1.7; the result of section 2.2.4 indicates that, for

the two-covering C : y2 = f(x), I should consider the diagram

C(Q)
µ //

��

L×/Q×(L×)2

��
C(Qp)

µp // L×
p /Q

×
p (L×

p )2

and the relevant primes are the infinite prime, 2, and the primes dividing ∆ =

disc f . The infinite prime is handled in section 2.4.3; in sections 2.4.1 and 2.4.2

we compute the size of µp(C(Qp)), which turns out to have at most 8 elements,

and in section 2.4.4 we discuss how to compute the image itself given its size.

The input to this routine is the representation for D
alg
4 defined in section

2.3 – that is, a triple (RB,MS, λ) where RB contains n elements of L×/K×(L×)2

generating L′, MS is an m× n matrix indicating which products of elements of

RB have square norm and have passed all the local tests tried so far, and λ ∈ Fn
2

corresponding to a product of elements of RB of norm ab2 for a the leading
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coefficient of the quartic defining C.
For each (possibly-infinite) prime p, we produce a linear map f : RB → V

and a coset of V which is the image

{f(T ) : T ∈ L′ could correspond to an H soluble at p} .

We then use the following lemma to update λ and MS to represent the elements

of D
alg
4 which are locally soluble at all the primes considered so far, and, unless

we have shown there are none, we proceed to the next prime.

Lemma 2.4.1 (Explicit intersection of a coset and the image of a coset

under a linear map). Suppose we have a linear map f : x → xM1 from a

vector space V1 = Fa
2 to a vector space V2 = Fb

2, a source coset C1 ⊂ V1 of

the form λ + S and a target coset C2 ⊂ V2 of the form µ + T , where T is a

d-dimensional subspace of V2, and S a c-dimensional subspace of V1. Let MT

and MS be the matrices (of sizes d × b and c× a respectively) giving bases for

these subspaces. Let

M∗
T =

(

ker(MT
T)
)T

be the dual matrix of MT .

Then, if there are no solutions to xMSM1M
∗
T = (µ + λM1)M

∗
T , we have

C2 ∩ f(C1) = ∅. If there are solutions, they will lie in a coset ν +G of F c
2 ; let

MG be the r × c matrix giving a basis for G. The subset of C1 consisting of

points x with f(x) ∈ C2 is the coset λ′ + S′ of F a
2 , where λ′ = λ + νMS , and

M ′
S = MGMS is an r × a matrix whose rows generate S ′.

2.4.1 The value of [E(Qp) : 2E(Qp)]

Lutz discovered that an elliptic curve defined over a local fieldKp has a subgroup

M of finite index isomorphic to OKp
. If we consider the exact sequence

0 // M // E(Kp) // G // 0
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with G the finite quotient group E(Kp)/M , combine it with the multiplication-

by-two map on each of its terms to get

0

��

0

��

0

��
M [2]

��

E(Kp)[2]

��

G[2]

��
0 // M

×2

��

// E(Kp)

×2

��

// G

×2

��

// 0

0 // M

��

// E(Kp)

��

// G

��

// 0

M/2M

��

E(Kp)/2E(Kp)

��

G/2G

��
0 0 0

and then apply the snake lemma, we obtain the long exact sequence of finite

groups

0→M [2]→ E(Kp)[2]→ G[2]→M/2M → E(Kp)/2E(Kp)→ G/2G→ 0.

M ' OKp
is torsion-free and so ‖M [2]‖ = 1; G is finite and so ‖G[2]‖ =

‖G‖ /2G. Working through the alternating product of sizes, we have

‖E(Kp)/2E(Kp)‖ = [M : 2M ] ‖E(Kp)[2]‖ .

This result is described as “classical” in [8]. As obvious corollaries, we have

Lemma 2.4.2.

‖E(Kp)/2E(Kp)‖ =
∥

∥OKp
/2OKp

∥

∥ ‖E(Kp)[2]‖

and, specialising further to Kp = Qp, M = Zp,

Lemma 2.4.3. Let E be an elliptic curve defined over Q, given by y2 = f(x).

Let ` be one plus the number of linear factors of f over Qp. Then

‖E(Qp)/2E(Qp)‖ =







2` p = 2

` p 6= 2
.
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2.4.2 The size of im C(Qp) in L×

p /Q
×

p (L×

p )2

Recall lemma 2.2.3:

Lemma 2.4.4. Let C : y2 = f(x) be a two-covering. Then P∞− ∈ 2[C(K), P∞+ ]

if and only if f has a root in K.

Theorem 2.4.1. Let C : y2 = f(x) be a two-covering of the elliptic curve

E : y2 = g(x). Let Rp be the image of C(Qp) in L×
p /Q

×
p (L×

p )2 under the map

(x, y) → x − α of theorem 2.2.3. Then the size Np of Rp is v[E(Qp) : 2E(Qp)],

where v = 1 if f(x) has a root in Qp, and v = 1
2 otherwise, where the value of

[E(Qp) : 2E(Qp)] is given explicitly in lemma 2.4.3.

Proof. Let α be a root of f in Qp, and let Kp = Qp(α). From theorem 2.2.3,

we have

Rp '
C(Qp)

E(Qp) ∩ 2E(Kp)
,

and by lemma 2.2.10 and the result before it, this coset space has size equal to

[E(Qp) : E(Qp) ∩ 2E(Kp)].

Since

2E(Qp) ⊂ E(Qp) ∩ 2E(Kp) ⊆ E(Qp)

we have

[E(Qp) : 2E(Qp)] = [E(Qp) : E(Qp) ∩ 2E(Kp)]× [E(Qp) ∩ 2E(Kp) : 2E(Qp)]

= Np × [E(Qp) ∩ 2E(Kp) : 2E(Qp)]

Now, lemma 2.2.8 tells us that the rightmost term is 1 if f(x) has a root in

Qp, and 2 otherwise; rearranging terms gives the claimed result.

Note that Np can never be larger than eight, and Np = 8 is not particularly

common. We require p = 2, and need a quartic, irreducible over Q, which splits

into linear factors over Q2, and whose associated cubic is also irreducible over

Q but splits into linear factors over Q2;

y2 = 2x4 − 3x3 − 15x2 + 38x− 16

is such a two-covering. The rarity arises because neither of the necessary split-

ting patterns is a particularly common one for random polynomials over Q2 of

the relevant degrees.
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2.4.3 Checking at the infinite prime

Every element of C is a square, but the negative elements of R are not squares;

this gives a test for local solvability at the infinite prime, which is essential

since there do exist two-coverings, representing elements of X[2], which have

four-descendents solvable at all but the infinite prime.

For a non-trivial two-covering, the quartic f in ay2 = f(x) will have zero,

two or four distinct real roots; if it has no real roots we cannot gain anything

at this stage.

So, assume f has n real roots, r1 < . . . < rn. We have n embeddings

Ei : L → R given by sending θ to ri; given an ε ∈ L×/(L×)2 which we think

may be an element of D
alg
4 , consider the signs of Ei(ε). Certainly the product

of these signs will have the same sign as a if ε ∈ D
alg
4 : this is the only condition

we can use if n = 2.

If n = 4 and f is irreducible (so L = K(θ) for f(θ) = 0), note that, if

ε ∈ D
alg
4 and therefore can be written as ε = (x+ yθ)z2, then the signs of Ei(ε)

will be those of x + yri, since Ei(z
2) will always be a square, hence positive.

Since the ri are in ascending order, the x+ yri will be monotonically increasing

or decreasing. So the sign can change at most once – that is, if a is positive,

the signs for an element of the right form must be ++++ or ++−− or −−++

or −−−−, and if a is negative, they must be +++− or −−−+ or +−−− or

−+++.

Let M1 be the n× 4 matrix over F2 giving the signs of the four embeddings

for all the elements of RB; we map the ±1 to F2 by sending +1 → 0,−1 → 1.

The set of permissible signs for a given leading coefficient is a coset µ+ T of a

two-dimensional subspace T of F2
4: let MT be the 2× 4 matrix giving a basis

for this subspace, and apply lemma 2.4.1.

To be absolutely explicit,

µ =







(0 0 0 0) a > 0

(0 0 0 1) a < 0
; MT =



































0 0 1 1

1 1 0 0



 a > 0





0 1 1 0

1 0 0 1



 a < 0

2.4.4 Checking at finite primes

To check solubility at a finite prime, we compute the image Rp of C(Qp) in

the quotient Lp/Qp(Lp)
2, where Lp is the localised algebra of section 1.6, and

then see which elements of D
alg
4 lie in this image under the localisation map of

that section. We know the size of the image by theorem 2.4.1, and we have the

following lemma:

44



Lemma 2.4.5. The set Q2
p has measure ρ in Qp, where ρ is 1/6 if p = 2 and

p
2p+2 otherwise.

Proof. A non-zero square in Qp is an element w with even valuation v, such

that p−vw is a square unit. By standard results involving quadratic residues,

the density of squares among the units of Zp is one half, unless p = 2, where it

is one quarter. A random element of Zp will have valuation 0 with probability

1 − p−1, 1 with probability p−1 − p−2, and so on. So the probability of even

valuation is 1−p−1+p−2−p−3 . . ., or p
p+1 . Multiplying these probabilities gives

the indicated result.

The lemma suggests that we can expect to find points on C(Qp) fairly easily,

at least if we can assume that f(x) : x ∈ Qp is a randomly-distributed collection

of elements of Qp. This is not a safe assumption, but experiment indicates that

running through elements of p−tZp for various small t does normally produce

enough points to fill out Rp very quickly.

We have a convenient magma function MakeModSquares, which takes a num-

ber field K and a prime ideal p of K, and gives an F2 vector space Gp '
K×

p /(K
×
p )2 of dimension dp and a map φp : K× → G. Using this function with

K = Q[x]/(f(x)) allows us to construct Gp ' L×
p /(L

×
p )2 where

L×
p =

⊕

pi|p
L×

pi

by letting Gp be an F2 vector space of dimension
∑

p|p dp, and (since the base

algebra L is equal to the number field K because f was irreducible over Q) we

can construct ψ1 : L× → Gp as the concatenation of the F2-vectors φp for all p

dividing p.

However, the image of the Cassels map µ actually lives in L×
p /Q

×
p (L×

p )2; this

group is isomorphic to the quotient of Gp by the image in it of Q×
p /(Q

×
p )2, so

we use magma’s quotient facilities to quotient by the group 〈ψ1(ti)〉 for T = {ti}
a generating set of Q×

p /(Q
×
p )2 (we take T = {2, 3, 5} for p = 2, and T = {p, q},

where q is the smallest positive integer not a quadratic residue mod p, otherwise).

Let H be this quotient vector space, and define its dimension as k; let

τ : Gp → H be the natural quotient map, and ψ(x) = τ(ψ1(x)). With

this tool, and our prior knowledge of Np, we can build the set Rp fairly easily.

Since f did not have any factors over Q, we can be sure that any x ∈ Q will

not have x = αpi for any of the Lpi , so the Cassels map µ : C(Qp) → L×
p is

simply the generalised x → [x − α1, . . . , x − αr] of section 1.6, which with the

definitions above is just ψ(x− α) where α is the root of f in K.

To construct the set, we simply test, for values of x ∈ Q starting at 0 and

going up by some δ at each step, whether f(x) is a non-zero p-adic square; if
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so, compute ψ(x−α), see if it is in the set, and add it if it is not. Stop once we

have Np elements in the set.

An obvious refinement is to take advantage of the fact that Rp is of the form

µ + T where µ is some unknown element and T is an exponent-2 subgroup of

known degree e = log2Np). So, the first element of Rp that we encounter we

use as µ; we then maintain a list of generators, initially empty. When we find

another element b, we compute b− µ and check if it can be written as a sum of

some subset of the generators; if not, we add it as a generator. When we have

found e generators, stop.

The unrefined process will terminate iff every orbit of C(Qp) under the ac-

tion of 2E(Qp) contains an element (x, y) with x/δ integral, though we have

no guarantee how long it may take. The refined process requires only that a

generating set of (x, y) with x/δ ∈ Z exists.

It is not clear how to pick a value of δ which will always work. After some

experiment, I use a two-stage process: start with R=250, δ = 1, dellim = 4.

Search [0, Rp) in steps of size 1, [Rp, 2Rp) in steps of size p−1, [2Rp, 3Rp) in

steps of size p−2, and so on until the steps have reached size p−dellim. Then

increase R by a factor p4, increase dellim by one, and start again at [0, Rp).

The need for this elaborate process can be seen in examples like

f(x) = 2x4 + 4x3 + 237x2 + 620x+ 6772

where the x with f(x) a 2-adic square are all of the form x = −3238+O(215), and

the x found to generate the two classes are 29530 and 62298; it takes something

like 35 seconds to find these. Over several thousand runs of the four-descent

machinery, it emerges that the problematic prime is almost always 2, although

the most troublesome curve I encountered was

y2 = 5x4 + 4x3 − 4306x2 + 67452x− 299959

which behaves unpleasantly over Q11.

Once we have generated µ and T , we let M1 be the n × k matrix whose

rows are the images ψ(ε) in H of the elements of RB, and apply lemma 2.4.1 to

(M1, µ,MT ).

2.5 Minimisation of four-coverings

It turns out that minimisation of four-coverings requires only one more step

than the minimisation of two-coverings which has been routine since Birch and

Swinnerton-Dyer’s paper, and which is very completely described in [71].
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The critical, new step is

Theorem 2.5.1. Given a prime p, and an integral four-covering [A,B] possess-

ing a point over P3(Qp) and with p2| det(Ax+By), there exists an integral four-

covering [A′, B′] equivalent to [A,B] with det(A′x + B′y) = p−2 det(Ax + By)

or p−2 det(Ay +Bx). Also, there is an effective method to construct this.

Note that, for p ≥ 5, the condition of [71] is that valp I < 4 or valp J < 6,

where I and J are the covariants of the quartic Ax +By; as a result, p12 does

not divide det q. For p = 2, 3 the minimisation is more complicated, and it is

possible that p12| det q for a p-minimal quartic, though not that p24| det q.

Given this theorem, we define an integral four-covering [A,B] as p-minimised

if det(Ax + By) is a p-minimal quartic. Being p-minimised is not as strong

a condition as being p-minimal in the sense of section 1.4.1, but the condi-

tions are equivalent for p ≥ 5, since transformations (α, I2, I4) ∈ AD4
change

valp ∆([A,B]) by a multiple of 12, and a p-minimised [A,B] will have valp ∆([A,B]) <

12. Moreover, we have

Theorem 2.5.2. If [A,B] is p-minimal, it is p-minimised.

Proof. Suppose not, so there exists a p-minimal four-covering with det(Ax+By)

not minimal at p. The algorithm in [71] can easily be converted to take a quartic

f(x, y) and return

M =

(

a b

c d

)

∈ GL2(Z) : detM = pr

and e with 2e > r and p−2ef(ax+by, cx+dy) minimal: in any case where one of

the variables is to be divided by some pf , we instead multiply the other variable

by pf and add 2f to e. Do this to f = det(Ax +By), then replace [A,B] with

[aA+ bB, cA+dB], which multiplies each coefficient in det(Ax+By) by pr. We

can now apply theorem 2.5.1 e times to bring the multiplier back down.

After this process, we have an element of AD4
whose action reduces the

power of p dividing det(Ax + By); which is a contradiction since [A,B] was

formerly assumed p-minimal.

2.5.1 Constructive proof of theorem 2.5.1

To prove theorem 2.5.1 involves considering a number of cases, in each of which

we construct a member of AD4
which brings the determinant down.

Let [A,B] be an integral four-covering, let q = det(Ax+By) be the associated

quartic, and let p be a prime with p2 dividing the content of q. Let M̃ be the
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image of the matrix Ax + By in M4(Fp[x, y]), and rgen be the rank of M̃ over

Fp[x, y]: let Ã and B̃ be the images of A and B in M4(Fp).

We cannot have rgen = 4, since det M̃ ≡ q (mod p), and by hypothesis q ≡ 0

(mod p); so M̃ has zero determinant and must be singular.

Lemma 2.5.1. If rgen < 4, then there can be at most rgen matrices in the

pencil with rank less than rgen, and none with rank > rgen.

Proof. If a matrix has rank s, all the s+ 1× s+ 1 minors must have zero deter-

minant; also, at least one s×s minor must have non-zero determinant. Now, M̃

is of rank rgen, so has at least one rgen× rgen submatrix whose determinant is a

non-zero sum of products of precisely rgen linear terms – that is, a homogenous

degree-rgen polynomial f(x, y).

The determinant of the corresponding submatrix in λA+µB is then f(λ, µ);

for the rank to be lower than rgen, this must be zero, which can happen in at

most rgen ways.

Suppose M = λÃ + µB̃ had rank r with r > rgen. Then there is an r × r
minor of M with non-zero determinant. But the corresponding r×r minor of M̃

has determinant identically zero, and M is obtained by specialising x = λ, y = µ

in M̃ . So this cannot happen.

Lemma 2.5.2. Given an m-dimensional subspace of Fn
p spanned by the m

linearly independent vectors 〈V1, . . . , Vm〉, there exists a matrix in SLn(Z) which

transforms the subspace into one spanned by vectors whose images are the first

m standard basis vectors mod p.

Proof. Note that a matrix with the desired property must exist in SLn(Fp), and

use the result of lemma 1.38 of [59], namely that the map SLn(Z)→ SLn(Z/NZ)

is surjective for all n ≥ 1, N ≥ 1.

It turns out that an essential operation for one of the cases of minimisation

is the flip:

Definition 2.5.1. Let A and B be two symmetric matrices in M4(Z) such that

the top left 2× 2 submatrices mod p are the zero matrix.

Let A′ and B′ be obtained from A and B respectively by dividing the entries

in the top left 2× 2 submatrix by p, and multiplying those in the bottom right

2× 2 submatrix by p; then [A′, B′] is the flip of [A,B], and is integral.

Lemma 2.5.3 (Flipping Lemma). [A,B] and [A′, B′] are equivalent four-

coverings, and, if [A,B] has the point x = (x1, x2, x3, x4), then [A′, B′] has the

point x′ = (px1, px2, x3, x4).
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Proof. The flipping operation is equivalent to multiplying both matrices by p,

and then performing a change of variables to replace x1 and x2 by px1 and px2

respectively; both these transforms send four-coverings to equivalent ones, and

the latter clearly acts on points in the way claimed in the lemma.

The same argument makes it clear that det(Ax+By) = det(A′x+B′y).

Nearly all the subcases of the proof will involve transforming [A,B] so that

the kernel of some matrix lies along the standard basis vectors; to save space,

make the following definition:

Definition 2.5.2. Let e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0), e4 =

(0, 0, 0, 1) be the standard basis vectors for F4
p.

Proof of theorem 2.5.1. The proof proceeds case by case. The arguments almost

all involve careful considerations of the powers of p dividing the entries of a

matrix; we write, for example, a
(2)
11 for a11p

−2, once we have demonstrated that

p2 divides a11 exactly.

2.5.2 rgen = 0

If rgen = 0 then M̃ is the zero matrix; so Ã = B̃ = 0. So p4 must divide D, and

[A′, B′] = [p−1A, p−1B] will be an equivalent four-covering with D′ = p−4D.

2.5.3 rgen = 1

Lemma 2.5.4. If rgen = 1, then every matrix in the pencil modulo p is of the

form λM̃ for λ ∈ Fp and M̃ some matrix of rank 1 with entries from Fp (λ = 0

is permitted).

Proof. C̃ = Ãx + B̃y is a matrix of linear forms; say C̃ = (cij). Because C̃ is

of rank 1, we have ciicjj = c2ij , so in particular if cii = 0 the whole ith row and

column are zero. If cii and cjj are not both zero, then ciicjj = c2ij , and by unique

factorisation in Fp[x, y] we have cii = cij = cjj up to a scalar multiple. That is,

all the non-zero elements of C̃ must be equal up to a scalar multiple.

Thus there is a common rank-three kernel for every non-zero matrix in the

pencil; change variables so this kernel is spanned by 〈e1, e2, e3〉, and then write

x′4 = p−1x4, which has the effect of replacing [A,B] with [PAP T , PBP T ] where

P = diag(1, 1, 1, p). This causes every matrix in the pencil to be congruent to

the zero matrix mod p, whilst multiplying the associated quartic q by p2. But

now we can divide both A and B by p, which divides q by p4 and has removed

the desired power p2.
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2.5.4 rgen = 2

In this case, there must be a non-trivial common kernel; if there were not, we

could change variables such that ker Ã = 〈e1, e2〉 and ker B̃ = 〈e3, e4〉. But then

Ã occupies the top 2× 2 quadrant, B̃ occupies the bottom 2× 2 quadrant, and

their sum would have rank four.

We have the following lemma:

Lemma 2.5.5 (A consequence of local solvability). Let [A,B] be a four-

covering with a point z = (z1 z2 z3 z4) over ¶3(Qp), such that

M = Ax+By =

(

pC1 pX

pXT C2

)

=

(

p(C11x+ C12y) pX

pXT C21x+ C22y

)

.

Let z be written such that at least one of its components is a p-adic unit.

Then, for at least one of C = C1 and C = C2, there is an element u of F2
p,

not equal to (0 0), with uCuT = 0.

Proof. Suppose not, so uCiu
T ≡ 0 (mod p) =⇒ u ≡ (0 0) (mod p).

Write z1 = (z3 z4) and z2 = (z1 z2); then we have zMzT ≡ z1C2z1
T

(mod p).

And so z1 ≡ (0 0) (mod p); say z1 = (pz′3 pz
′
4).

But consider [A′, B′], the flip of [A,B]. We know by 2.5.3 that z′ = (pz1 pz2 pz
′
3 pz

′
4)

is a point on [A′, B′]; and, since we’re working in projective space, so must

z′′ = (z1 z2 z
′
3 z

′
4) be.

However, z′′Mz′′T ≡ z2C1z2
T (mod p), which, since we assumed that quadratic

form also only had trivial points mod p, implies that z2 ≡ (0 0) (mod p). Hence

p divides all four elements of z, and we have a contradiction of the assumption

that at least one of those elements is a unit.

So there must be a non-zero solution u to at least one of the quadratics

uCiu
T = 0.

Case 1: Ã and B̃ have a common two-dimensional kernel

Change variables so that the common kernel is 〈e1, e2〉. In these coordinates,

xA+ yB will be of the shape

(

pC1 pX

pXT C2

)

that we saw in lemma 2.5.5.
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If C2 represents zero non-trivially – that is, when we write C2 = xD + yE,

we find ∃x = (x1 x2) 6= (0 0) (mod p) with xDxT = xExT ≡ 0 (mod p) – then

we can consider an element

(

α β

γ δ

)

∈ SL2(Z)

such that α ≡ x1 (mod p), β ≡ x2 (mod p), and transform [A,B] by the matrix













1 0 0 0

0 1 0 0

0 0 α β

0 0 γ δ













.

This produces a 3× 3 submatrix of zeroes in the top left-hand corner of Ã and

B̃, and then transforming by (p−1, I2, diag([1, 1, 1, p])) will replace [A,B] by an

[A′, B′] with det(A′x+B′y) = p−2 det(Ax+By).

To check whether C2 represents zero non-trivially, we look for a common

root to the quadratic polynomials xMix
T in Fp[x, y], where Mi are the bottom

2×2 submatrices of A1 and B1. This fails at the prime 2, since M =

(

0 1

1 0

)

is

non-zero but the associated quadratic is identically zero; however, in that case

[0, 1] is a common point.

If C2 represents zero only trivially, perform a flip on [A1, B1] to get [A2, B2]

such that xA2 + yB2 is of the shape

(

C1 pX

pXT pC2

)

.

Since [A,B] is assumed solvable at p, by lemma 2.5.5 we must have C1 repre-

senting zero non-trivially, and we proceed as above.

Case 2 : dim(ker Ã ∩ ker B̃) = 1

Change variables so that the common kernel is 〈e1〉, the additional generator of

kerA is e2 and that of kerB is e3. So we have

A =













pa
(1)
11 pa

(1)
12 pa

(1)
13 pa

(1)
14

pa
(1)
12 pa

(1)
22 pa

(1)
23 pa

(1)
24

pa
(1)
13 pa

(1)
23 a33 a34

pa
(1)
14 pa

(1)
24 a34 a44













, B =













pb
(1)
11 pb

(1)
12 pb

(1)
13 pb

(1)
14

pb
(1)
12 b22 pb

(1)
23 b24

pb
(1)
13 pb

(1)
23 pb

(1)
33 pb

(1)
34

pb
(1)
14 b24 pb

(1)
34 b44












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where the submatrices

A1 =

(

a33 a34

a34 a44

)

, B1 =

(

b22 b24

b24 b44

)

have determinant 6= 0 (mod p).

Naturally p| det(Ax+By) since the whole first row and column are divisible

by p. Ex hypothesi, p2| det(Ax + By); modulo p2, we have det(Ax + By) ≡
pg(x, y) where

g(x, y) = a
(1)
11 b22 detA1x

3y +
(

a
(1)
11 a33 detB1 + b

(1)
11 b22 detA1

)

x2y2

+ a33b
(1)
11 detB1xy

3

= xy
(

a
(1)
11 x+ b

(1)
11 y)(b22 detA1x+ a33 detB1y

)

We have unique factorisation in Fp[x, y], so one of the two bracketed terms

must be zero; thus either a
(1)
11 = b

(1)
11 = 0 or b22 = a33 = 0.

If a
(1)
11 ≡ b

(1)
11 ≡ 0 then we can apply

(

p−2, I2, diag(1, p, p, p)
)

and remove

a factor p2. If b22 = a33 = 0 then we can apply
(

p−1, I2, diag(1, 1, 1, p)
)

, in

aggregate removing a factor p2.

2.5.5 rgen = 3

If the generic rank is three and there is no common kernel, then at least one

of Ã and B̃ must have rank three, since otherwise we could transform to make

ker Ã = 〈e1, e2〉 and ker B̃ = 〈e3, e4〉 and Ã+ B̃ would have rank four.

Swapping A and B has the effect of reversing the order of the coefficients of

the associated quartic; however, the definition of minimality in Appendix A of

[71] indicates that this will have no effect on its minimality. So we can assume

that Ã has rank three; B̃ then has rank two or three, since B̃ of rank one could

be written with ker B̃ = 〈e1, e2, e3〉, forcing ker Ã = 〈e4〉 and then Ã + B̃ has

rank four. So we can decompose into three cases:

Case 1: rgen = 3, ker Ã ∩ ker B̃ 6= {0}

Transform so that the common kernel is 〈e4〉. We have

C = Ãx+ B̃y ≡













0

C1 0

0

0 0 0 0












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where the entries of C1 are linear forms in integers, and detC1 6≡ 0 (mod p)

because rankC = 3. That is,

Ax+By =













pd1

C1 pd2

pd3

pd1 pd2 pd3 pd4













Now, the associated quartic q = det(Ax + By) is congruent to pd4 det(C1)

(mod p2). And we know q ≡ 0 (mod p2), so we have d4 ≡ 0 mod p, and

applying
(

p−2, Id2, diag(p, p, p, 1)
)

will remove a factor p2 from q.

Case 2: rgen = 3, rank Ã = rank B̃ = 3, no common kernel

Perform a unimodular transformation to make ker Ã = 〈e1〉 and ker B̃ = 〈e2〉;
so

A =













pa
(1)
11 pa

(1)
12 pa

(1)
13 pa

(1)
14

pa
(1)
12 a22 a23 a24

pa
(1)
13 a23 a33 a34

pa
(1)
14 a24 a34 a44













, B =













b11 pb
(1)
12 b13 b14

pb
(1)
12 pb

(1)
22 pb

(1)
23 pb

(1)
24

b13 pb
(1)
23 b33 b34

b14 pb
(1)
24 b34 b44













.

Define submatrices

A1 =







a22 a23 a24

a23 a33 a34

a24 a34 a44






, B1 =







b11 b13 b14

b13 b33 b34

b14 b34 b44






.

Since the ranks of Ã and B̃ are both 3, detA1 6≡ 0 (mod p) and likewise for B1.

As always, we have det(Ax + By) ≡ 0 (mod p2), and so all its coefficients

are 0 (mod p2); modulo p, the coefficient of x3y in q mod p is b11 detA1 and

the coefficient of xy3 is a22 detB1, so we must have a22 ≡ b11 ≡ 0 (mod p).

With those conditions, we have

detAx+By = (a23b14 − a24b13)
2
x2y2 (mod p),

so a23b14 ≡ a24b13 (mod p), and the vectors

(

a23

a24

)

and

(

b13

b14

)

are proportional.

They are not both the zero vector, because that would make detA1 ≡ detB1 ≡
0, so, by a unimodular transformation affecting only rows 3 and 4, we can

arrange a24 ≡ b14 ≡ 0.
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So, without loss of generality, the matrices look like

A =













pa
(1)
11 pa

(1)
12 pa

(1)
13 pa

(1)
14

pa
(1)
12 pa

(1)
22 a23 pa

(1)
24

pa
(1)
13 a23 a33 a34

pa
(1)
14 pa

(1)
24 a34 a44













, B =













pb
(1)
11 pb

(1)
12 b13 pb

(1)
14

pb
(1)
12 pb

(1)
22 pb

(1)
23 pb

(1)
24

b13 pb
(1)
23 b33 b34

pb
(1)
14 pb

(1)
24 b34 b44













.

We now perform a “flip” operation; multiply x3 and x4 by p and divide the

whole matrix by p. After this operation, the matrices look like

A′ =













a
(1)
11 a

(1)
12 pa

(1)
13 pa

(1)
14

a
(1)
12 a

(1)
22 a23 pa

(1)
24

pa
(1)
13 a23 pa33 pa34

pa
(1)
14 pa

(1)
24 pa34 pa44













, B′ =













b
(1)
11 b

(1)
12 b13 pb

(1)
14

b
(1)
12 b

(1)
22 pb

(1)
23 pb

(1)
24

b13 pb
(1)
23 pb33 pb34

pb
(1)
14 pb

(1)
24 pb34 pb44













.

By the flipping lemma, det(Ax+By) = det(A′x+B′y), so p2| det(A′x+B′y).

Now, 〈e4〉 is a common kernel of the two matrices; hence, we are in a situation

with a common kernel, and we have already shown that in such a situation we

can remove a factor p2.

Case 3: rank Ã = 3, rank B̃ = 2, no common kernel

Change basis such that ker Ã = 〈e1〉 and ker B̃ = 〈e2, e3〉.
We have

A =













pa
(1)
11 pa

(1)
12 pa

(1)
13 pa

(1)
14

pa
(1)
12 a22 a23 a24

pa
(1)
13 a23 a33 a34

pa
(1)
14 a24 a34 a44













, B =













b11 pb
(1)
12 pb

(1)
13 b14

pb
(1)
12 pb

(1)
22 pb

(1)
23 pb

(1)
24

pb
(1)
13 pb

(1)
23 pb

(1)
33 pb

(1)
34

b14 pb
(1)
24 pb

(1)
34 b44













;

define A1 and B1 as

A1 =







a22 a23 a24

a23 a33 a34

a24 a34 a44






, B1 =

(

b11 b14

b14 b44

)

.

The given conditions on the ranks of A and B mean that neither detA1 nor

detB1 is divisible by p. As always, det(Ax +By) ≡ 0 (mod p)2; modulo p, we

have

det(Ax +By) = (detB1(a22a33 − a2
23))x

2y2 + b11 detA1x
3y ≡ 0.
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So b11 ≡ 0 (mod p); also, the determinant of the matrix

(

a22 a23

a23 a33

)

is zero mod p, so by a suitable change of variables we have a22 ≡ a23 ≡ 0

(mod p).

Hence, without loss of generality, we have

A =













pa
(1)
11 pa

(1)
12 pa

(1)
13 pa

(1)
14

pa
(1)
12 pa

(1)
22 pa

(1)
23 a24

pa
(1)
13 pa

(1)
23 a33 a34

pa
(1)
14 a24 a34 a44













, B =













pb
(1)
11 pb

(1)
12 pb

(1)
13 b14

pb
(1)
12 pb

(1)
22 pb

(1)
23 pb

(1)
24

pb
(1)
13 pb

(1)
23 pb

(1)
33 pb

(1)
34

b14 pb
(1)
24 pb

(1)
34 b44













.

Perform a flip operation, and we have

A′ =













a
(1)
11 a

(1)
12 pa

(1)
13 pa

(1)
14

a
(1)
12 a

(1)
22 pa

(1)
23 a24

pa
(1)
13 pa

(1)
23 pa33 pa34

pa
(1)
14 a24 pa34 pa44













, B′ =













b
(1)
11 b

(1)
12 pb

(1)
13 b14

b
(1)
12 b

(1)
22 pb

(1)
23 pb

(1)
24

pb
(1)
13 pb

(1)
23 p2b

(1)
33 p2b

(1)
34

b14 pb
(1)
24 p2b

(1)
34 pb44













which clearly have 〈e3〉 as a common kernel; so we can apply previous sections

to remove a factor p2 from q([A′, B′]).

A practical implementation of minimisation for four-coverings simply follows

the shape of this proof slavishly.

2.6 Reducing four-coverings

2.6.1 Two forms of näıve reduction

We have actions of GL2 and GL4 on four-coverings; they commute, so we reduce

under the two actions separately. To handle the action of GL2, we want the

generating matrices A and B to have the smallest possible L2 norms: we achieve

this by reducing the two-dimensional lattice in Z16 generated by (aij) and (bij),

using an algorithm due to Gauss [38].

For the GL4 reduction, until the work of Stoll mentioned below, I used a

steepest-descent procedure to find a local minimum for
∑

a2
ij + b2ij .
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Define the matrix norm 2 L2(M) =
∑

a2
ij , and extend it in the obvious way

to pairs of matrices by L2([A,B]) = L2(A) + L2(B).

To perform one reduction step, consider the twelve 4× 4 matrices with ones

along the diagonal, and zeroes everywhere else except for a single x; computing

L2(M · [A,B]) for such a matrix M gives a quartic polynomial p(x).

p(x) is positive definite because it is a sum of squares, so, for a given r,

p(x)− r will be negative in only a finite region (either one interval or two). By

solving the quartic p(x)− r = 0 we can obtain this region; if it is short enough

that it makes sense to check every integer within it, we do that and return the

one giving the least p(x). If not, we replace r by p(t) for t chosen at random

within the region, and repeat. The region must get shorter at each iteration so

this process is finite.

This gives for each M the value of x that minimises L2 (M (x) · [A,B]); we

look over the minimal values given by all twelve matrices and pick the M and

x which give the smallest value. If it is not an improvement on L2([A,B]) then

stop, otherwise replace [A,B] by M(x) · [A,B] and continue.

The convergence of this method is not at all good, since we are restricted

to movements along a small set of directions, and the route to the local mini-

mum need not lie conveniently with relation to this set; on many curves it ran

overnight without completion. It would be straightforward to augment the set

of directions used, by using matrices of the form

M













1 x 0 0

0 1 0 0

0 0 1 0

0 0 0 1













M−1

for arbitrary M ∈ GL4(Z), but the method is in any case rendered obsolete by

Stoll’s work in the next section.

2.6.2 Stoll’s reduction method

Stoll’s reduction method [69], a side-result of his work on reduction of ternary

cubics in [27], associates a real 4-variable Hermitian quadratic form C ′ to any

four-covering, and then declares the four-covering reduced by transforming it

by the matrix M such that MC ′MT is LLL-reduced.

To define C ′, note that over P(Q) there will be four points Pi = (λi : µi)

such that det(λiA + µiB) = 0 . Each Pi corresponds to a singular quadric in

our pencil3; let vi be a vector in ker(λiA + µiB), the vertex of this singular

2to be pedantic, this is the square of the normal L2 matrix norm
3given that we forbid 2-torsion on the elliptic curve, and hence the quartic defining our
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quadric. Note that vi is only defined up to a scalar multiple.

Replacing [A,B] by [A′, B′] = [MAMT,MBMT] where M ∈ SL4(C) has

rows the vi, we convert the four-covering to a standard form where the singular

quadrics each have vertex ei and are represented by diagonal matrices M (i) =

λiA
′ + µiB

′, with M
(i)
ii = 0.

The ‘standard-position form’ is then defined as

C = diag



1,

√

√

√

√

∣

∣

∣

∣

∣

M
(3)
22 M

(4)
22

M
(3)
11 M

(4)
11

∣

∣

∣

∣

∣

,

√

√

√

√

∣

∣

∣

∣

∣

M
(2)
33 M

(4)
33

M
(2)
11 M

(4)
11

∣

∣

∣

∣

∣

,

√

√

√

√

∣

∣

∣

∣

∣

M
(2)
44 M

(3)
44

M
(2)
11 M

(3)
11

∣

∣

∣

∣

∣



 .

We transform back to the original co-ordinate frame by C ′ = M−1CM−1T
,

which is the correct rule for transforming a Hermitian form: think of C =
∑

Ci|yi|2. C ′ is then a symmetric positive-definite matrix of real numbers: we

scale its entries so that
∑4

i,j=1 c
2
ij = 1.

C ′ is a lattice associated with the four-covering [A,B]; we say that [A,B] is

reduced if C ′ is LLL-reduced. And, since the C ′ is essentially a covariant of the

four-covering, we can construct (by using magma’s LLLGram function) the matrix

K ∈ SL4(Z) for which KC ′KT is LLL-reduced, and then replace [A,B] by the

reduced four-covering [A′, B′] = [KAKT,KBKT] as a reduced form of [A,B].

2.6.3 Canonical forms for four-coverings

LLL reduction for a lattice need not give an absolutely unique element in the

SL4(Z)-orbit containing that lattice; if a canonical form for a reduced four-

covering is desired, we must also take account of the fact that the variables can

be permuted, their signs can be changed, one or other or both of the matrices

A and B can be negated.

Since the lattice involved is of rank 4, there is a truly-canonical reduction

in which we list the vectors of the lattice in order of increasing length, and

pick, four times, the shortest vector not a linear combination of vectors already

picked. magma has various facilities built in for listing vectors in order of length,

which is the hard part of this operation.

To deal with the other non-uniquenesses, we define a canonicalisation pro-

cedure: the canonical form of the four-descendent [A,B]

• has the diagonal entries of the matrix A in increasing order by absolute

value, with ties broken by looking at the diagonal entries of B (that is, if

aii = ajj with i < j, we want bii ≤ bjj).

• has the first non-zero diagonal entry of both A and B positive

two-covering is irreducible over Q, these Pi will not lie in P(Q)
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• A12, A13, A14 ≥ 0

• If A12 = 0 then B12 ≥ 0, and likewise for A13 and A14

These definitions are useful when writing down four-coverings, since they

provide a single form for a reduced, minimised four-coverings, and hence four-

coverings with those properties are equivalent iff they look the same.

2.6.4 Practical notes

The Stoll reduction performs an SL4(Z) transform, and the LLL reduction per-

forms an SL2(Z) transform. Stoll-reducing an LLL-reduced form need not pro-

duce an LLL-reduced form, and vice versa. So we apply LLL and Stoll reductions

alternately, keeping track of every form we see and stopping when we reach some

form for the second time; Stoll reduction can sometimes substantially increase

the L2 norm of a four-covering (though usually LLLReduce(StollReduce(x))

will have smaller L2 norm than x), so we cannot simply apply transformations

until the L2-norm stops going down.

There is no point in keeping track of the transformations used; it would be

useful only in the unlikely event that we might want to see what a point found

on the reduced four-covering looked like on the original four-covering, and in

that case I’ve found it easy to follow

H1

jH1→E // E
j−1

H2→E// H2

where the inverse map is calculated by the method of section B.1.

The conversion of a four-covering with large elements to standard form re-

quires calculations to an extremely high level of precision; the current imple-

mentation requests 12d+ 1000 significant figures of each root of the associated

quartic, where d is the largest number of digits of any entry in either matrix

defining the four-covering, and implementations working with less grotesque

precision frequently failed to have MAMT even close to a diagonal matrix.

Thankfully, magma has fast enough ultra-high-precision arithmetic that this is

not an insurmountable obstacle.

2.7 Finding rational points on a four-covering

At this stage in the four-descent procedure, we have obtained a set of size 2s+r−1

(where 2s = ‖X[2]‖ and r = rankE; see section 2.10.1 for the derivation of this

number), whose elements are pairs of 4 × 4 matrices (A,B) with integer coef-

ficients, representing everywhere-locally-solvable intersections of two quadrics.
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Our goal becomes to find explicit points (w, x, y, z) with

f1(w, x, y, z) = f2(w, x, y, z) = 0.

There are two obvious approaches: a direct search, which is easy to write

but slow, and an indirect approach which involves significantly more preparatory

work, but makes the implementation of the sieve more straightforward since we

can work on a variety defined by a single polynomial, and offers a significant

constant factor of speed improvement.

For the direct search, having first checked whether there is a point with

x1 = x2 = 0, we let (x1 : x2) run through P1(Q) (IE through pairs of coprime

integers), substitute into both equations to get a pair of homogenous quadratics

in x3 and x4, and use standard resultant-based methods to solve two simultane-

ous quadratics. The problem boils down to finding the roots in Q of a quartic

equation, once for each choice of (x1 : x2).

For the indirect approach, we pick some quadratic form Q from the pen-

cil and find one point on it, and use lines through that point to construct a

parametrization of the rational points onQ, of the form PQ = (φ1(t, u, v) . . . φ4(t, u, v))

with the φi homogenous quadratic forms.

Let Q2(x1, x2, x3, x4) be a quadratic form in 〈f1, f2〉 independent of Q, and

construct the homogenous ternary quartic T (t1, t2, t3) = (φ1(t1, t2, t3) . . . φ4(t1, t2, t3)).

We now perform a direct search on this ternary quartic: let (t1 : t2) run

through pairs of coprime integers and substitute in, which gives a quartic equa-

tion for t3; if it has roots over Q then we have successfully found a point, which

we map back to 〈f1, f2〉 by evaluating the φi at (t1, t2, t3).

Although φ is a parametrization by quadratic forms with potentially rather

large coefficients (if the point we picked on Q had large co-ordinates), it is a

degree-one map. This apparent contradiction resolves itself by the experience

that, substituting in the co-ordinates of size around N of a point found on T ,

we get a point with co-ordinates of size around N 2 on Q, but these co-ordinates

have a common factor of size around N .

Both attacks can be sped up by sieving procedures, where the sieves are de-

rived by working backwards from the requirement that the quartics have roots

in all Fp. Constructing the sieve for the symmetric approach is not entirely

straightforward, but the routines for checking solubility over Fp of a pair of

quadratics were implemented as part of an earlier unsuccessful attempt to un-

derstand local solvability of four-coverings.

The asymmetric attack requires more setting-up – to find even one point

on one of the quadratic forms can be difficult. The easiest approach is to take

hyperplane sections, which then give plane conics on which we can use the
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sophisticated routines for finding rational points developed by Cremona and

Rusin [24] and implemented in magma.

There is one hyperplane corresponding to each element of P3(Q), so we have

many possible choices; in my current implementation I check the points arising

from all 1120 choices of

(x1 : x2 : x3 : x4) : xi ∈ Z, |xi| ≤ 3,GCD {xi} = 1

and pick the rational point whose coordinates have smallest maximum absolute

value. I do not have any argument that that is the best choice.

Setting up the conics for this approach, however, requires at each stage the

factorisation of the coefficients of the ternary quadratic form Qt describing the

hyperplane section (or, at least, the factorisation of the determinant if we use

the method of [67]). This is a severe problem if using unreduced four-coverings;

with the much smaller coefficients of Stoll-reduced four-coverings the problem

essentially vanishes.

GL3(Q) acts on ternary quartics by change of variable, so as in previous cases

there is the potential for minimisation and reduction. When the four-covering

is reduced, the coefficients in the ternary quartic are small enough that there is

not much scope for further reduction; I am sure that a reduction approach via

a Hermitian covariant exists, but leave finding it to future work.

2.7.1 Parametrizing a P3 quadric via a rational point

We assume that the rational point has no zero coordinates, or at least that

the non-zero coordinates are at variables where we can affinise. If our point is

p = (p1 : p2 : p3 : p4), and our quadric Q is in the variables x1, x2, x3, x4, begin

by picking some i : pi 6= 0.

Produce an affine ternary quadratic Q̃ by setting xi = pi; we obtain a point

p′ by listing the pj : i 6= j. Construct

x = p′ +







tu

tv

tw






,

and substitute this into the equation for Q̃ to get a quadratic equation in t, one

of whose roots will be zero.

The other root will be of the form `(u, v, w)/q(u, v, w), where ` is a homoge-

nous linear form and q a homogenous quadratic. So, substituting back into x,
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we get something of the form

[f1(u, v, w)/f4(u, v, w), f2(u, v, w)/f4(u, v, w), f3(u, v, w)/f4(u, v, w)]

with all the fi homogenous quadratics, and f4 = q. Reprojectivise, clear f4 from

the denominators, multiply through by the LCM of the denominators of all the

coefficients, and we have a parametrization over P3 by homogenous quadratic

elements of Z[u, v, w].

2.7.2 Some invariants of the ternary quartic

Note that SL3(Z) is generated by the maps M1 : (x, y, z) → (x + y, y, z), M2 :

(x, y, z) → (x + z, y, z), M3 : (x, y, z) → (x, x + y, z) and M4 : (x, y, z) →
(x, y, x+ z).

To prove this, we recall that SL3(Z) must be generated by the elementary

3× 3 matrices. These elementary matrices have ones along the diagonal and a

single non-zero off-diagonal element, so are clearly powers of M1 through M4,

together with M5 : (x, y, z) → (x, y + z, z) and M6 : (x, y, z) → (x, y, y + z).

Now, observe that

M5 = M−1
1 M3M

−1
1 M2M1M

−1
3 M1

and

M6 = M−1
1 M3M

−1
1 M4M1M

−1
3 M1.

To motivate that observation, recall the computer-science trick of swapping A

and B by the instruction sequence A := A+B; B := A-B; A := A-B; we are

using this to swap x and y.

Consider a generic ternary quartic

q(x, y, z) = ax4 + bx3y + cx3z + dx2y2 + ex2yz + fx2z2 + gxy3 + hxy2z

+ ixyz2 + jxz3 + ky4 + ly3z +my2z2 + nyz3 + oz4

where I will call the terms xαyβzγ ‘q-terms’, and the a . . . o ‘`-terms’: the `-

terms label the q-terms, and we say for example that g labels xy3. We call

a term – a product of the `-terms raised to some powers, of degree the sum

of the relevant exponents – coherent of weight w if the product of the q-terms

labelled by its `-terms is (xyz)w. For example, cdfjl2 is a degree-six term which

is coherent of weight 8, since x3zx2y2x2z2xz3(y3z)2 = x8y8z8. Coherent terms

exist only for degrees a multiple of 3; it’s fairly clear (by considering the action

of I, 2I, 3I ...) that any invariant must be a sum of coherent terms of equal

degree.
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By a procedure which is essentially equating coefficients — let f =
∑

λiti,

where ti are the coherent degree-3 terms, and require f(Mi ◦ q)− f(q) = 0 for

i = 1 . . . 4 to get a great number of expressions in the λi which must all be

simultaneously zero — we find that

∆(q) = 144ako− 36aln+ 12am2 − 36bgo+ 9bhn− 6bim+ 9bjl+ 9cgn− 6chm

+ 9cil− 36cjk + 12d2o− 6den+ 4dfm− 6dhj + 2di2 + 2e2m

− 6efl+ 9egj − ehi+ 12f 2k − 6fgi+ 2fh2

is invariant under the action of SL3(Z). It is obvious that ∆(nq) = n3∆(q), and

easy to check that ∆(q(αx, βy, γz)) = (αβγ)4∆(q(x, y, z)).

Working on coherent degree-six terms instead, we have a rather complicated

sparse linear system to solve, and we end up with two independent invariants

∆2 and Ψ. These invariants ∆ and Ψ have in fact been known for a very long

time – they appear in [54] – but it is interesting to derive them, and rather

easier and more likely to be correct than typing in the page-long expressions

from the reference book.

2.7.3 The LinearMinimise approach

Let f1 be an integral homogenous ternary quartic; we wish to find a transfor-

mation M ∈ SL3(Q) to make the valuations of the invariants ∆(M · f1) and

Ψ(M · f1) as small as possible while keeping M · f1 integral. Naturally we can

do this one prime at a time, and, since the action by a matrix of determinant

p−1 would send ∆→ p−3∆ and Ψ→ p−6Ψ, we need consider only the (usually

very few) p with p3|∆(f1) and p6|Ψ(f1).

For a given p, we consider the set P of points on f over P2(Fp). If we ever

find that all the elements of P lie on the same line ` : `xx + `yy + `zz = 0 –

which is a simple matter of linear algebra – we have an expression which holds

for all the points of f over P2(Fp). So, if we lift `x, `y and `z to Z, we have,

for all points in P2(Z), that `xx + `yy + `zz = pw. We then eliminate x, y

or z (naturally we require `x 6= 0 to eliminate x and so on) in exchange for

pw; for example, substituting `yy = pw − `xx− `zz, we get a new homogenous

ternary quartic f2 in x,w, z, and a transformation matrix, which we call M12,

for recovering a point on f1 from one on f2.

We can remove any factor dividing all the coefficients of f2, and repeat this

process to get f3, f4 and so on, accumulating the transformation matrices to

get M13, M14 and so on. This repeated process can finish in one of two ways.

Either the points of fn over Fp fail all to lie on a line, in which case we report fn
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and M1n and terminate, or we can find that M1n has all its coefficients divisible

by p. In this latter case, we have shown that f1 has no non-trivial points in

P2(Zp), since any such point would arise from one on fn, but the action of M1n

would send it to something with a common factor in all three coordinates, which

is not permitted.

Of course, the latter case does not occur in the four-descent as implemented,

since we have assured local solubility at the algebraic stage before even con-

structing the four-coverings. This step serves in the current implementation

only to reduce the problems that might arise from an infelicitous choice of gen-

erator on the first P3 quadric.

2.8 Sieving for points on homogenous ternary

polynomials

We are given a homogenous ternary polynomial Q(x, y, z) = 0, and seek an

integral point on it. Fixing two of the variables gives a univariate polynomial in

the third; we are happy if this has a solution over Q since we can simply scale

to get one over Z. To find solutions quickly, we apply a sieving process first.

This part of the algorithm is implemented as a separate C++ program

sievetq, using Victor Shoup’s NTL library [60] for the polynomial factorisa-

tion, with a small interface routine written in magma to translate the polynomial

into the list of coefficients which sievetq requires, and translate the output of

sievetq into a format that magma can handle.

For the polynomial to have a solution over Q, it must have one over Fp for

all p, and indeed over Z/pnZ for all prime powers. We divide the prime powers

into two sets; the eighteen ones less than 64 are called ‘small’ and used in the

first phase of the sieving, whilst the sixteen primes between 67 and 139 are used

as filters.

We work simultaneously on the three polynomials Q1 = Q(x, y, z), Q2 =

Q(x, z, y), Q3 = Q(z, y, x); this is to ensure that a point on Q will be found in

time dependent on its second-largest co-ordinate, rather than its largest. For

each of these polynomials P , and each small prime power q, we construct a

q × q array of bits Aq (since q ≤ 64 this array is stored as q 64-bit integers),

with Aq [x, y] = 1 if there exists a z ∈ [0, q) with P (x, y, z) ≡ 0 (mod q), and 0

otherwise. We find such a z simply by running through all possibilities; for q

this small, this is much quicker than using NTL to factorise the polynomial mod

q.

Since P is homogenous, P (ax, ay, az) ≡ 0 ⇐⇒ P (x, y, z) ≡ 0; we do not

take advantage of this for q a prime power, but, if q is prime, we compute the

63



y = 1 row explicitly, then construct the other rows by Aq [x, y] = Aq[xy
−1, 1]

where the inverse is taken mod q. Clearly A[x, 0] = Aq [1, 0] for x 6= 1, which

allows the y = 0 row to be constructed very quickly.

For a filter prime p, we construct a one-dimensional arrayAp of p+2 elements

numbered 0 . . . p + 1; Ap[x] records ∃z : P (x, 1, z) ≡ 0 (mod p) for x ∈ [0, p),

Ap[p] records ∃z : P (1, 0, z) ≡ 0 (mod p), and Ap[p+1] records ∃z : P (0, 0, z) ≡
0 (mod p). Constructing these sieves, for the three permuted polynomials and

the thirty-four primes, takes a couple of seconds.

We sieve the plane in regions, picked of a size r× r such that the number of

bits in a region fits in the 256- or 512-kilobyte level-two cache of the computer

used; we start with a region centred at (0, 0), and then work outwards in a pat-

tern of squares. This allows a search to be conveniently extended incrementally,

without re-searching regions already handled.

To sieve a region centred at a given point, we construct an r×r array of bits,

initialised to 1, and then tile it with appropriately-aligned and -offset copies of

the small-prime sieve arrays, combining them using the AND operation. Af-

ter this, a bit will be set only if it is a possible solution modulo all the small

prime powers. We read out the co-ordinates of the set bits, offset them to get

x and y co-ordinates, and proceed to the filtering stage. The initial implemen-

tation missed out the filtering stage, proceeding directly to NTL’s polynomial

factorisation, and accordingly spend nearly all its time factorising.

At the filtering stage, we consider candidate (x, y) pairs, and reduce them

modulo each of the filter primes p. If the Y co-ordinate is zero we check Ap[p]

if x 6= 0 and Ap[p + 1] otherwise; if not, we check Ap[xy
−1]. This requires a

single modular inversion – done by a look-up table – per candidate, and is very

quick; indeed, quicker than sieving by the filter primes would be, since the time

taken is proportional to the number of candidates rather than the size of the

r× r sieve array. It rejects a large number of useless candidates; the remainder

are checked by polynomial factorisation, and, if success is declared, passed to

an output routine.

The two-stage sieving process, using bitwise sieves for primes smaller than

the size of a machine word and a second filtering step for larger primes, is also

used in Stoll et al’s ratpoint program for finding points on y2 = f(x).

To search, without success, the region |x| < 10240, |y| < 10240, for all three

permuted polynomials, for an input ternary quartic, takes approximately 12.3

seconds on a P4/2400 computer; to search |x|, |y| < 5× 104 takes about fifteen

minutes. Obviously, successful searches would be quicker since we stop at the

first point found.

The same approach would work on homogenous ternary polynomials of any

order, in particular the ternary cubics which would appear in any effort to
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perform an explicit 3-descent; indeed, the ternary-cubic case can be handled by

sievetq simply by filling the degree- four elements of the input quartic with

zeroes, at a small performance penalty over customised code.

For bounds larger than about 104, my optimised C++ implementation of the

sieve is inferior to my magma implementation of the much more clever algorithm

due to Elkies in the next section.

2.9 p-adic Elkies search on a pair of quaternary

quadratics

Elkies [33] gives an algorithm which, for very generally-defined functions

f(x1, . . . , xm),

will find all the points over Zm with |xi| ≤ N and |f(x1, . . . , xm)| < δ (for

sufficiently-small δ) in time O(N logO(1)N); in particular, it will find all the

integral points on f with |xi| ≤ N .

I present below an implementation I devised for the quaternary-quadratic

case which interests us, and I also have an implementation written by Elkies

himself for working on ternary quartics. One expects better results from working

on the quaternary quadratics, since the lattices have determinant ∆ = p5 rather

than ∆ = p3, and the number of ‘spurious’ vectors of length ` is O(`2∆−1).

The paper [33] proposes an algorithm using real approximations to the curve

– surrounding the curve by a union of parallelepipeds – rather than the p-adic

approach used here: that would be rather more difficult to implement because

effective bounds on the curvature of the surfaces involved would be necessary

to optimise the number and volume of parallelepipeds used while guaranteeing

that they contain the curve.

The approach is rather reminiscent of the classical lattice arguments used

in first-year number theory texts to show that every integer is a sum of four

squares, though the final step is a construction via LLL reduction rather than

an existence argument via Minkowski’s theorem.

We start with a pair of homogeneous four-variable quadratics

fi(x1, x2, x3, x4) = 0.

Write

di =

[

∂fi(1, x2, x3, x4)

∂x2
,
∂fi(1, x2, x3, x4)

∂x3
,
∂fi(1, x2, x3, x4)

∂x4

]
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as the two partial derivatives.

Given a search bound N , we pick a prime p slightly greater than N , and run

through the range x = 1 . . . p. For each x, we list the solutions to

f1(1, x, y, z) ≡ f2(1, x, y, z) ≡ 0 (mod p)

by finding the roots of the quartics over Fp obtained by substituting x1 = 1, x2 =

x into pre-computed resultants Resy(f1, f2) and Resz(f1, f2): at absolute worst

there will be sixteen, usually there are between zero and two.

For each of these solutions P , we perform a Hensel lift to a point P ′ with

f1(P
′) ≡ f2(P ′) ≡ 0 (mod p2), by solving

d1 · [u, v, w] ≡ −p−1f1(Pi) (mod p)

d2 · [u, v, w] ≡ −p−1f2(Pi) (mod p)

This is an under-determined system, so solutions are of the form

[x1, x2, x3] + λ[y1, y2, y3].

We can scale so that y1 = 0 or y1 = 1.

Let P ′ = P + [0, px1, px2, px3], let D = [0, py1, py2, py3] where we are con-

sidering the yi as elements of Z. If y1 = 1, consider the lattice L generated by

P ′, D, [0, 0, p2, 0] and [0, 0, 0, p2]; if not, use P ′, [0, p2, 0, 0], D and [0, 0, 0, p2] as

the generators.

Any vector v ∈ L will by construction have f1(v) ≡ f2(v) ≡ 0 (mod p2)

and v ≡ λP (mod p) for some λ; equally, any vector satisfying the two above

conditions will lie in the lattice. In particular, any vector with v ≡ λP (mod p)

and f1(v) = f2(v) = 0 ∈ Z will do so.

We can ask magma for the vectors in the lattice with norm less than 4p5/2,

using the ShortVectors function, and it has very efficient algorithms for cal-

culating them; since the determinant of the matrix defining the lattice is p5,

we expect there to be O(1) entries of norm that short. However, any vector

v ∈ Z4 with all its coordinates in [−N5/4, N5/4] and with f1(v) = f2(v) = 0

will be among them. So we look along our list of short vectors for ones that are

simultaneous points on f1 and f2, and return those: this will sometimes return

points one of whose coordinates is a bit greater than N and the others enough

smaller to compensate, but we don’t mind obtaining extra rational points.

In experiments on a number of four-coverings, we find that an unsuccess-

ful search with bound N takes very close to N milliseconds on my P4/2400

computer; as mentioned above, this breaks even with the sieving process at

N5/4 ≈ 104 or N ≈ 1600.
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There are two minor problems. The search method will not give points with

x1 = 0, which is not a serious defect since such points can be found by setting

x1 = 0, x2 = 1 and solving the pair of quadratics. If, for some value of x2, the

derivative vectors d1 and d2 are linearly dependent mod p, the search method

does not work for that x2 value; but it will work for a different p.

And in practice one considers several different p, since, when a very simple

point P exists, the short vectors will include P, 2P, 3P, . . .; the ShortVectors

function then spends effort to find these, and another loop then needs to spend

effort to filter out points with (x1, x2, x3, x4) 6= 1. So it’s worth starting with a

small p and then increasing it until a point is found or a time limit exhausted;

this also avoids the embarrassment of finding a point with very small coefficients

towards the end of a search with a very large p. As usual for this kind of p-adic

algorithm, it’s not possible to use the results of a search with small p to speed

up a search with larger p.

2.10 Working with several descendents

Recall that the four-descent process is a second two-descent; so the input to

it is an elliptic curve E, a pair of integers r1 < r2 with r2 = rankS2(E), a

set of r1 independent points on E which we generally ignore, and a set D2 of

2r2−r1−1 everywhere-locally-solvable two-coverings, one per non-trivial element

of the quotient of S2(E) by the part generated by the known generators of E(Q).

We compute four-descents on all the elements T ∈ D2. If some T has no

everywhere-locally-solvable four-descendents, we know it represented an element

of X[2]; if not, it gives us some elements of S4(E).

Folklore has it that a two-descent with ‘reasonable’ bounds for point search

on the two-coverings will miss out at most one generator; that is, that you do

not expect an elliptic curve to have more than one enormous generator. The

conjectured finiteness of X[2∞] means that a two-descent on a curve with non-

trivial X[2], finding all the generators for the Mordell-Weil group, will have an

even difference between the Mordell-Weil and the 2-Selmer ranks. So it was

expected that a two-descent which finds r1 generators and a 2-Selmer rank of

r2 indicated that the curve has Mordell-Weil rank r1 (r2 − r1 even) or r1 + 1

(r2 − r1 odd), and X[2] = Z/2Z
r2−r1(+1).

It was also believed that X[2] = X[2∞] for almost all curves, though it is

not clear what evidence existed to justify this. Until this work, the only way

to look at X[2∞] was to believe all the conjectures and compute Xanal. This

takes a long time for curves of even moderately large conductor, even if routines

to evaluate L-functions and their derivatives are easily available – and they are

not available in the default installation of any common computational number
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theory package.

2.10.1 How large is D4?

Suppose we have an elliptic curve E with E(K)[2] trivial, and E(K) ' Zr;

naturally E/2E ' (Z/2Z)r and E/4E ' (Z/4Z)r. Suppose that the Tate-

Shaferevich group of E has

X[2] ' (Z/2Z)s, X[4] ' (Z/2Z)s1 × (Z/4Z)s2

so ‖X[2]‖ = 2s and ‖X[4]‖ = 2s14s2 , with s = s1 + s2. We also have ‖S2‖ =

2r+s and

‖S4‖ = 2s14r+s2 = ‖S2‖2 2−s1 .

We have the standard 2- and 4-descent diagrams

0 // E/2E // S2
// X[2] // 0

0 // E/4E // S4
// X[4] // 0

which combine to give the second-descent diagram (see for example [22])

0

��

0

��

0

��
0 // E/2E

×2 //

��

E/4E //

��

E/2E //

��

0

0 // S2
//

��

S4
//

��

S2
//

��

coker // 0

0 // X[2]
�

� //

��

X[4]
×2 //

��

X[2] //

��

coker // 0

0 0 0

where the cokernel is X[2]/2X[4], of size 2s1 ; its size could also be calculated

by recalling that the alternating product of the orders of the groups along any

row or column is 1.

So the image of S4 in S2 has index 2s1 , indicating that 2r+s2 of the 2r+s1+s2

two-descendents do lift to four-descendents. If s1 = 0, all the contribution of

X to the 2-Selmer group is the result of generators of order at least four, and

the four-descent doesn’t improve the bounds; if s2 = 0, all the contribution of

X to the 2-Selmer group is the result of generators of order exactly two, and
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the only part of S2 which lifts is the image of E.

If an element of S2 lifts to S4, its preimage will have order ‖S2‖ = 2r+s.

Each four-covering curve gives two elements of S4, so we will find 2s+r−1 four-

descendents for each of the 2r+s2 elements of S2 which lift. These counts include

the trivial element of S2, which lifts but which in practice we do not observe.

For example, if E were a rank-one curve with X ' (Z/2Z×Z/4Z)2, we have

r = 1, s = 4, s1 = 2, s2 = 2; we obtain 25 − 1 = 31 non-trivial two-descendents,

of which seven lift, each giving 16 four-descendents. Exactly one of this total

of 112 four-coverings will have a rational point which will lift to the generator

of E, but we have to check all of them to find it; this is irritating if the correct

four-covering is the 112th checked.

2.10.2 Some worked examples

Consider the curve E : y2 = x3 − 758201. E has trivial torsion over Q, and

mwrank tells us that the 2-Selmer rank is four, which would give us fifteen non-

trivial two-descendents. However, a point (which lifts to P1 = (105, 632) ∈ E) is

found on one of the descendents C1; mwrank conveniently computes the quotient

S2/ 〈P1〉, which has eight elements, and gives us seven non-trivial two-coverings

which serve as coset representatives from this quotient group.

According to the folklore in the introduction to this section, we expect to be

able to find one more generator and to prove that X[2∞] = Z/2Z
2
; that is, r =

0, s1 = 2, s2 = 0, which would give ‖E(Q)/4E(Q)‖ = 42 and ‖S‖4 = 2242 = 64.

Six of these two-coverings are resolvable, in that we find D
alg
4 = ∅ even

without checking local solvability. On the seventh, all the algebraic checks for

local solvability succeed, and we find eight four-descendent curves; as noted

before, each of these curves corresponds to two elements of S4.

We construct the ternary quartics corresponding to each of these eight

curves, and search for points up to median(|u|, |v|, |w|) < 3× 211 (since this is

the smallest search region supported by sievetq; an unsuccessful search takes

about ten seconds, a successful search is quicker since it stops as soon as a point

is found). On two of the curves, we find points; these map back to

P2 = (104537330339493746889721/209525644862, Y +)

where Y + is a complicated positive rational number, and to P ′
2 = P2 + 2P1. If

we add −P2 and −P ′
2 to this set, which we are allowed to do by picking the

opposite sign for Y , we get a whole coset (P2 +2E(Q))+4E(Q). LLL reduction

of the height-pairing matrix gives {P1, P2 − P1} as a basis consisting of points
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of minimal height;

P2 − P1 = (2955517495127759347317/21271879432, Y −
1 )

is only marginally more attractive than our original P2.

One two-descendent C2 lifted, to give eight four-descendents. But, had we

not quotiented out by 〈P1〉 or ignored the trivial two-covering, we would have

had four two-descendents (triv, C1, C2, C1+C2) capable of lifting. So, from section

2.10.1, we have 2s1+s2+r−1 = 8 and 2r+s2 = 4, and by listing explicit generators

we have r ≥ 2. We can solve to get s2 = 0 and s1 = 2; so E ' Z2 and

X[2∞] ' (Z/2Z)2.

Occasionally, and generally only when performing a four-descent on a curve

with a point so small that it can be found trivially in some other way, we find

several points on the same four-descendent: for example, on the pair of quadrics

2wy − 2xz + z2 = 2wx+ 2wy + 2y2 + 2yz − z2 = 0,

associated to the curve y2 = x3−15x−10 with rank 1 and generator P = [−1, 2],

a search up toN = 104 finds points [0 1 0 0], [1 0 0 0], [2 1 0 2], [2 −5 −6 2], [11 −
3618 − 6], [396 79 − 102 − 216], [828 − 1445 − 1734 − 3672]; these correspond

to P,−3P, 5P,−7P, 9P,−11P, 13P respectively.

Looking at such a series of points lets us examine the relationship between

max log |xi| where x = (x1, x2, x3, x4) lies onH, andH(jH→E(x)): as we expect,

once we consider sufficiently large multiples of P0, we have

H(jH→E(x)) ≈ 8 max log |xi|

but if we define

f(n) =
max log |xi|
n2H(P0)

where jH→E(x) = nP0

we find f(n) tends to 8 from above; the height-improvement factor is greater,

the smaller the näıve height of x.

2.10.3 How long does this all take?

To get some idea of the timings involved, consider the curve E : y2 = x3 +

17x + 3137294. mwrank takes 8.5 seconds to give 0 ≤ r ≤ rankS2 = 3 and to

give seven non-trivial two-coverings. d4 takes 256.4 seconds to find four four-

descendents on one of those two-coverings and to demonstrate that the others

are insoluble, and a further 15.1 seconds to find a point (on the last four-covering
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checked) which lifts to one on E. Of the 256.4 seconds, 38.2 seconds were spent

computing class groups, 40.2 computing unit groups, 31.9 computing generators

for L′(S, 2), 19.8 checking local solvability, 3.3 minimising four-coverings (there

were only four to minimise), and 120.0 reducing the four four-coverings; the

remaining 3.0 seconds were probably spent in initialisation.

For another example, consider E : y2 = x3 + 17x+ 3140360. Again we have

0 ≤ r ≤ rankS2 = 3 and seven two-coverings C1, . . . , C7, but this time all seven

two-coverings give four descendents Hi1,Hi2 . . . each – this was computed in

193.1 seconds, but without reducing the descendents. We then start reducing

descendents and looking for points on them; success strikes with H13, which

after reduction has a very simple point which lifts to a point P ∈ E(Q) of

height 49.091; using the techniques in appendix B.1, we find as expected that

j−1
C (P ) is defined over Q only on C1, and j−1

H1i
(P ) is defined over Q only for H13.

So far, we do not know whether E is of rank 1, or of rank 3 with some

peculiarly enormous extra generators, and to resolve this purely by descent

means would require a third descent, the techniques for which are not yet known.

But, since we expect the rank to be one, we can use the theorem of Kolyvagin

that a curve with the sign of the functional equation negative will have rank

one if L′(E, 1) 6= 0; after several hours, an analytic-rank computation using

the program described in section 3.1.2 reveals L′(E, 1) ≈ 273.2 6= 0 and so

rankE = 1. Our four-descent has calculated X[4] = (Z/4Z)2, and if we believe

the BS-D conjecture we have Xanal ≈ 16.01 and X = (Z/4Z)2.

The implementation of four-descent is sufficiently routine that it is used on

several thousand curves in section 3.5, though there is no space to give any

detail about any of those calculations.

2.10.4 Ridiculously large generators

For an extreme example of how effective four-descent can be at finding otherwise-

hopelessly-large generators, consider the curve

E : y2 = x3 + 17x+ 312521.

mwrank finds a single two-covering

Q : y2 = −x4 + 414x2 + 1048x+ 14351
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in a few seconds, and d4 takes 25.6 seconds, mostly spent computing the unit

group of Q(θ), to find the single four-covering

D =

























0 1 1 0

1 0 −1 0

1 −1 0 −1

0 0 −1 1













,













4 5 3 8

5 −4 9 −1

3 9 8 −4

8 −1 −4 −7

























with associated two-covering Q′ : y2 = −x4 + 8x3 + 390x2 − 576x + 13895

equivalent to Q.

A search up to bound 106 takes 320.7 seconds to find the point

[450570 256794 −565939 −10772]

on D; this lifts to

[−635126027431097

61394254976653
,
−765829042088018884851454009986

613942549766532

]

on Q′, and to a point (X/Z2, Y/Z3) on E of height 141.2113 with

X =12831418826273461070770393287686261462384882155045071621789472

Y =55699595417915742333591201684618684333474820176638468523259159

609970782811346917468041285651

Z =382914521044009442425727004993

This should be compared with the largest heights practically accessibly by

the 2-descent process, where finding a generator of height 80 involved a compu-

tation of several days.
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Chapter 3

Survey work on the

distribution of ranks and of

Tate-Shaferevich groups

In this chapter, we introduce a new tool and an implementation of a well-

known technique, and use them to study the distribution of ranks and of Tate-

Shaferevich groups across families of elliptic curves with various properties. The

research is prompted by the simple question “what proportion of elliptic curves

have rank two”. It does not answer this question – it does not even decide what

the correct measure on elliptic curves to use to define “proportion” would be –

but it gives reasonably compatible results from large searches on many different

families.

The new tool is ecsieve, which can find very quickly the elliptic curves in

a one-parameter family with many small integral points. On the output curves,

we investigate the distribution of ranks and conductors, with the aim of finding

curves with small – hopefully smallest-possible – conductor for their rank. To

give some idea of how skewed our samples are, we also look at the distribution

of small integral points on a random sample of elliptic curves.

The implementation work provides a respectably efficient way of evaluating

L-series and their derivatives; this lets us compare, on large sets of examples,

the X[2] obtained by four-descent and the Xanal of the Birch–Swinnerton-Dyer

formula.
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3.1 Tools and implementations

3.1.1 The ecsieve algorithm

The algorithm works for families of curves of the form y2 = xf(x) + K or

y2+y = xf(x)+K, for f(x) any polynomial function; in the following work f(x)

will be quadratic, though on a request from Stoll in December 2000 I performed

some limited calculations with larger-degree f to find genus-2 and genus-3 curves

with numerous integer points, in the expectation that the Jacobians of such

curves might have unusually large rank. I found no examples of higher rank

than Stoll already knew.

The method relies on the fact that enumerating the squares, or the numbers

of the form y2+y (an integer c is of that form iff 4c+1 is a square) in an interval

of Z is a very quick operation – for an interval [a, b], we compute ya = d√ae and

yb =
⌊√

b
⌋

, and run through
{

t2 : t ∈ [ya, yb]
}

if ya < yb. For a short interval,

which might contain not a single square, this takes roughly as long as two tests

for squareness of an integer (since a squareness test, though it may begin with

p-adic filters, must include the computation of a square root at some point).

So, for a sieving run, we fix bounds B1 and B2, an interval Ix of x co-

ordinates to check, and a threshold value T . Squares are positive, and all our

f will be monic quadratics so x3 will be large and negative for x large and

negative, so Ix will usually be narrow to the left of zero and wide to the right;

see the example intervals used in the trials.

The run-time is proportional to the length of Ix but with a rather small

constant of proportionality. The run time is fairly insensitive to B2, but the

memory usage is 2B2 bytes. It is possible to reduce this memory usage by any

factor desired, at the price of an equivalent increase in execution time.

We then run through a2 ∈ {−1, 0, 1} and a4 ∈ [−B1, B1]. Then, for each

x ∈ Ix, we compute A = x3 + a2x
2 + a4x, construct the set

S = {s : s = t2, t ∈ Z, |s−A| < B2},

and increment a counter c[B] whenever A + B lies in S. After considering all

the x values, we look for counters holding values greater than or equal to T ; the

index of the counter then gives us a curve y2 = x3 + a2x
2 + a4x+B with many

integral points.

We also construct the set S ′ = {s : s = t2 + t, t ∈ Z, |s−A| < B2}, and use

the same sieving techniques to find curves y2 + y = x3 + a2x
2 + a4x + B with

many integral points.

The algorithm is implemented in C++, and takes approximately 20 CPU-

seconds on a P4/2266 with DDR memory for a single a4 value, all six possibilities
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of a2 and a3, the Ix above, and B2 = 226. The total number of curves sampled

is 24B1B2.

The performance is entirely limited by memory bandwidth; the counters

that are incremented tend all to lie in different cache lines, and whilst they

are accessed in increasing order in memory, they are distributed sufficiently

randomly around the whole array that the cache does not help.

One implementation subtlety is that c is an array of bytes (to allow B2 to be

taken large), and so in principle, and in practice for singular curves when Ix is

long, it might overflow; so if c[B] ever reaches 254 we never increment it again.

We check at the end that every curve with c[B] = 254 is singular, and do not

bother announcing singular curves.

It does not seem possible to extend this algorithm to handle curves with

a1 6= 0; that is, curves of the form y2 + xy + y = f(x). So, in my survey work,

I encounter such a curve only when I find a curve isomorphic to it and with

a1 = 0: comparing my results with some unpublished work of Watkins [74]

in section 3.2.8, it is clear that this was a more severe obstruction than I had

expected.

3.1.2 Analytic ranks

Buhler, Gross and Zagier [12] note that, for an elliptic curve E of conductor N

and rank ≤ u and of the same parity, we have the sum

L(u)(1) =
∞
∑

n=1

an

n
Gu(n

√
N),

where an are the coefficients of the modular form associated to E, computed as

a multiplicative function after the ap are calculated as ‖E(Fp)‖ = p+ 1− ap for

p of good reduction and by Tate’s formula otherwise,

Gu(x) = Pu(− logx)

∞
∑

j=1

(juj!)−1xj

and Pu(x) is a polynomial with coefficients taken from the Taylor expansion

of Γ(1 + x). They introduce a recursive method which evaluates
∑K

i=1 θ(i)f(i)

for a multiplicative function θ using only O(
√
K) storage; since the baby-step-

giant-step method for computing ap takes time O(p1/4), we have an algorithm

taking roughly O(B5/4) time to compute the sum of the first B terms of the

series.

Setting B =
√
N gives accuracy of around six decimal places and reasonable

calculation time; I implemented this algorithm in Pari, where it is usable on a
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modern PC for curves with conductors up to about 1014. I announced it on the

Pari mailing list, and made my implementation available for download from my

Web pages (http://www.maths.nottingham.ac.uk/personal/pmxtow/BG.gp).

Given a technique for computing L-series derivatives, we can non-rigorously

calculate analytic ranks; we set u = 0 if the functional equation has sign +1

and u = 1 otherwise, compute L(u)(1), and calculate the pseudo-regulator

ξ =
L(u)(1)|Etors|2

Ω
∏

cp
.

If this has absolute value less than 10−4 – picked to be smaller than the smallest

regulator I have ever observed, which is 0.008914, for the rank-one conductor-

3990 curve

y2 + xy + y = x3 + x2 − 125615x+ 61201397

with generator (7107,−602054) from Cremona’s tables [20] – we assume it is

identically zero, increase u by two, and try computing L(u)(1) again. Otherwise,

we assert that u is the analytic rank, and state that REX is equal to the pseudo-

regulator ξ.

3.2 Curves with many integral points

3.2.1 Experiments performed

Two substantial runs of ecsieve were performed: small, where B1 = 216, B2 =

224, Ix = I1 = [−1000, 20000], T = 24, and large, where B1 = 217, B2 = 226,

Ix = I2 = [−215, 220], T = 40. large took roughly four weeks to compute, using

two P4/2266 computers and two 833MHz Alpha processors.

small sampled about 2.6×1013 curves, producing 5.9×106 with point counts

exceeding the threshold. Using pari, I computed the conductor and the sign of

the functional equation for all the 877398 curves with ≥ 31 points; using mwrank,

I computed the rank and generators for all 70767 pairwise non-isomorphic curves

with ≥ 41 points. All these curves had rank ≥ 4, and on each of them a full set

of generators was found.

large sampled 2.1 × 1014 curves, of which 1551130 had ≥ 40 points. I

computed conductors and signs for all of these, and ranks and generators for

the 9832 with ≥ 68 points (all had rank ≥ 5, and for each of them a full set of

generators was found); this latter calculation itself took about two CPU-weeks.
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Figure 3.1: Proportion of curves from the two samples that had a given point
count. The two lines are not honestly comparable, since Ix differs between the
samples.

3.2.2 How are the point counts distributed?

Figure 3.1 gives the proportion of curves from each of the two samples that had a

given point count; you will observe that the distribution is close to exponential.

These results are very much a large-deviation sample, so I also computed

point-counts, for the shorter interval I1, for a random sample of a million curves

from the region investigated in small, obtaining the results shown in figure 3.2.

The error bars here are derived by assuming that ‘having j points’ is an event

with some probability pj ; our million observations give a binomially-distributed

random variable, which is approximated as normal with meanNpj and standard

deviation Npj(1 − pj); that is, for given N and p, there is a 95% probability

that

SN ∈
(

Npj − 1.96
√

Npj(1− pj), Npj + 1.96
√

Npj(1− pj)

)

.

Observe that by far the most common count of points is 0.

3.2.3 What effect does changing Ix have?

The searches small and large were performed on overlapping regions but with

different Ix intervals. I therefore computed, for each of the 71378 curves of

known rank from small, how many extra points would have been obtained had

we used the wider intervals, and plotted this to give figure 3.3.
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The additional-point count seems to be roughly Poisson distributed, with

a parameter that increases as the rank goes up, though the curves overlap

sufficiently that it is not possible reliably to predict rank by observing point-

count augmentation.

3.2.4 How are conductors distributed for curves with many

integral points?

Figure 3.4 shows the distribution of the conductors for the curves of small and

large, obtained by sorting logN into buckets of width 0.1 and scaling so that

the largest bucket has size 1. Its multi-modality is very obvious, indicating that

it is probably the sum of several separate distributions. If we distinguish among

curves by the sign of the functional equation, we get figure 3.5, and it appears

safe to conjecture that each peak corresponds to a separate rank. Note that the

position of the peaks seems to remain fixed between the two samples, except

that the rightmost peak (rank 8) has moved towards larger conductors in the

larger sample.

3.2.5 The distribution of conductor with rank

We have not computed ranks for all of the curves from small or large: for the

latter, mwrank takes about one minute per curve and so we work with only the

9832 curves with more than 78 points. But, working only with the curves whose
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samples, and the two different signs of the functional equation

rank we know, we can construct figures 3.6 and 3.7.

3.2.6 Distribution of point count with rank

Figure 3.8 displays the distribution of point-counts for the curves of ranks 5, 6

and 7 from small – there were not enough curves of larger rank for the display

to make sense. You will notice that each of the distributions is approximately

exponential, with a slope decreasing as the rank does – observe the crossing-over

of the rank-6 and rank-7 curves: this explains why looking at high-point-count

curves serves to give us examples of large rank, since, as we increase the point-

count threshold, a larger proportion of the curves at that point count come from

the higher-ranked distributions.

3.2.7 Smallest-observed conductors for given ranks

Table 3.1 is obtained by combining information from many sources, and lists

the five curves of smallest conductor that I found for each rank between 3 and

9.

The rank-three curves are those of smallest conductor from Cremona’s [21]

tables, which exhaustively enumerate elliptic curves with conductor up to 20000:

there are four more such curves with N between 13766 and 20000. Some of the

rank-four and rank-five curves arise from unpublished work of Cremona, who
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Curve Conductor
Rank 3 : y2 + y = x3 − 7x+ 6 5077

y2 + xy + y = x3 − x2 − 6x 11197
y2 + xy = x3 − x2 − 16x+ 28 11642
y2 + y = x3 − x2 − 10x+ 12 12279
y2 + xy + y = x3 − 23x+ 42 13766

Rank 4 : y2 + xy = x3 − x2 − 79x+ 289 234446
y2 + y = x3 + x2 − 72x+ 210 501029
y2 + y = x3 − 7x+ 36 545723
y2 + xy + y = x3 − 35x+ 90 556838
y2 + xy = x3 − x2 − 34x+ 64 614066

Rank 5 : y2 + y = x3 − 79x+ 342 19047851
y2 + xy = x3 − 22x+ 219 20384311
y2 + y = x3 − 247x+ 1476 22966597
y2 + xy = x3 − x2 − 415x+ 3481 34672310
y2 = x3 − 532x+ 4420 37396136

Rank 6 : y2 + xy = x3 + x2 − 2582x+ 48720 5187563742
y2 + y = x3 − 7077x+ 235516 5258110041
y2 + xy = x3 − x2 − 2326x+ 43456 5739520802
y2 + y = x3 − 547x− 2934 6756532597
y2 + xy = x3 − x2 − 1486x+ 21688 6895251302

Rank 7 : y2 = x3 − 10012x+ 346900 382623908456
y2 + y = x3 − 36673x+ 2704878 814434447535
y2 + xy + y = x3 − 5983x+ 164022 1005276094726
y2 = x3 − 101647x+ 12379090 1022298908216
y2 = x3 − 12979x+ 405826 1074680679376

Rank 8 : y2 + y = x3 − x2 − 68520x+ 6724532 395623692381639
y2 + y = x3 + x2 − 23846x+ 1022562 409086620841461
y2 = x3 − x2 − 98310x+ 12416121 452976789140724
y2 + y = x3 − 23737x+ 960366 457532830151317
y2 + y = x3 − 63973x+ 6649278 468796409109295

Rank 9 : y2 + y = x3 − 121849x+ 38046702 509558981564991851
y2 + y = x3 + x2 + 44518x+ 49327152 1056142691473638331
y2 + y = x3 + x2 − 11720x+ 49465500 1057096963922857483
y2 + y = x3 + x2 − 27980x+ 52049010 1169348464809508603
y2 + y = x3 − 121387x+ 55813176 1231256525818173083

Table 3.1: The five curves of smallest conductor at each rank between 3 and 9,
observed in the tables [20], in Cremona’s search of |a4|, |a6| ≤ 500, and in the
searches small and large of section 3.2.1
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an adequate sample of curves from small

applied mwrank to all the curves with

a1 ∈ {0, 1} , a2 ∈ {−1, 0, 1} , a3 ∈ {0, 1} , |a4| ≤ 500, |a6| ≤ 500.

No curves in that region have 2-Selmer rank greater than five.

3.2.8 Other work in this field

Stein and Watkins have been endeavouring to construct very large tables of

elliptic curves with interesting properties: a preliminary report appears in [68].

In mid-2002, independently of my work, Watkins [74] used tests which he called

the H8 and H9 methods to look for curves of high rank. These found a number

of extremely good examples, including ones better than any my search offered

at ranks 8 and 9, and ones missing from my top-five table at ranks 6 and 7; I

list them in table 3.2. It is reassuring that his table of rank-five curves of low

conductor agrees exactly with mine.

The curves that appear in table 3.2 are ones for which the minimal model

has a1 6= 0; the substitution required to fix this increases the coefficients so

much that the a4 and a6 become too large to be found by my search.

3.2.9 What about regulators?

From small, I have full sets of generators for 70,767 curves. I computed regu-

lators, smoothed the data by computing the sum of a narrow Gaussian centred
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Curve Conductor
Rank 6 y2 + xy = x3 + x2 − 2582x+ 48720 5187563742

y2 + y = x3 − 7077x+ 235516 5258110041
y2 + xy = x3 − x2 − 2326x+ 43456 5739520802
y2 + xy = x3 − x2 − 16249x+ 799549 6601024978
y2 + xy + y = x3 − x2 − 63147x+ 6081915 6663562874

Rank 7 y2 = x3 − 10012x+ 346900 382623908456
y2 + xy + y = x3 − 14733x+ 694232 536670340706
y2 + y = x3 − 36673x+ 2704878 814434447535
y2 + xy = x3 − x2 − 92656x+ 10865908 858426129202
y2 + xy = x3 − x2 − 18664x+ 958204 896913586322

Rank 8 y2 + xy = x3 − x2 − 106384x+ 13075804 249649566346838
y2 + xy = x3 − x2 − 71899x+ 5522449 314658846776578
y2 + xy = x3 − x2 − 124294x+ 14418784 315734078239402
y2 + y = x3 − 135109x+ 18252072 323954505704623
y2 + xy = x3 + x2 − 69607x+ 6711985 325724094713742

Rank 9 y2 + xy = x3 − x2 − 139246x+ 36766576 205034814784919398

Table 3.2: The five curves of smallest conductor, for ranks between 6 and 8,
obtained by the “H8” and “H9” methods of Watkins [74]

at each of the log r, and, in figure 3.9, plotted P(log r = N) for the rank 5, 6,

7, 8 curves, scaled so that the highest peak has height 1. Similar data from the

9,832 curves from large appears in figure 3.10.

The multi-modal distributions, looking similar for each rank (if we translate

to line up the highest peaks, the other peaks align very well), are very striking:

they are unlikely simply to indicate that I sometimes computed a generating

set of index > 1 in E(Q), since the primary and secondary peaks are too far

apart to correspond to indices 1 and 2. The separation between the primary and

secondary peaks is consistently around 2.15, corresponding to a factor between

8 and 9 in the regulator; there is no striking difference in the distribution of the

a1, a2, a3 coefficients between the curves with low and high regulators of a given

rank (where ‘low’ corresponds to the first peak and ‘high’ to the region after

the first peak).

For the datasets of [20], you observe in figure 3.11 that the distributions for

each rank look much more unimodal; for the curves from section 3.5, the data

was so noisy that I smoothed it with a Gaussian of twice the width of that used

for the other regulator-distribution graphs, and again the distribution at each

rank looks unimodal, though the peak at the left-hand side of the rank-1 graph

in figure 3.12 appears to be a real feature of the data.

For [20], indeed, we find that the peak of the rank-one distribution is to the

right of that for rank two: but the ratio of rank-one to rank-two curves in that

data set seems very atypical. For the section 3.5 curves, of course, there is the
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Figure 3.9: Distribution of regulators for the curves from small of various ranks.

problem that we do not have regulators for the curves on which we failed to find

points, which we expect to be precisely those with the largest points and hence

probably the greatest regulators.

3.3 Curves with non-trivial torsion groups

There are finitely many possible torsion subgroups for an elliptic curve defined

over Q, and the elliptic curves with a given non-trivial torsion subgroup lie in

a one-parameter family. Explicit descriptions of this family – that is, explicit

functions EG(t) where EG(t) has torsion subgroup G for all but finitely many t

– are given in a paper of Kubert [46].

The coefficients of EG(t) can be quite large; for G = Z/12Z, the discriminant

for large t is proportional to t10, and its denominator is proportional to t24,

whilst the discriminant of the minimal model is proportional to t48. However,

the factorisation of the discriminant of a minimal model often involves very large

powers, and so, for t of small näıve height, the conductor is often surprisingly

accessible. I computed analytic ranks for EG(t) for all permitted G of size ≥ 4

(apart from (Z/2Z)2) and for t = ±n/d with n+ d ≤ 200, looking for the curve

of smallest conductor with a given rank and torsion group.

I found curves of rank two with all the torsion groups, and for Z/4Z, Z/5Z,

Z/6Z, Z/2Z × Z/4Z and Z/2Z × Z/6Z I found curves of rank three; I also

found a number of quite large values of Xanal. However, my results have been

significantly improved on by Kulesz [47], who has found families defined over
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Q(t) of elliptic curves of rank ≥ 1 and given torsion group, and Dujella; Dujella

maintains a Web site [31] giving the best-known ranks for each torsion group.

3.4 Mordell curves

3.4.1 Finding large-rank examples with ecsieve

The ecsieve program works very well for the Mordell curves y2 = x3 +K, so

I examined these for all |K| < 240, counting integer points with x co-ordinate

between −10400 and 220. These Mordell curves for |K| < 104 were studied

exhaustively in a paper of Gebel, Petho and Zimmer [39], who later extended

their search to |K| < 105 and found the smallest examples at rank 5. Some

generators were missing, and were found in later work by Wildanger [76].

Notice that the point (a2x, a3y) on y2 = x3 + a6K gives the point (x, y) on

y2 = x3 +K, and that, since y2 = x3 +K has complex multiplication by
√
−3,

there exists a 3-isogeny between the curves y2 = x3 +K and y2 = x3 − 27K:

explicitly, if we take

x′ = x+
4K

x2
, y′ =

y3 − 9ky

x3

we have x′3 − 27K = y′2.

Using all |K| < 240, rather than filtering to cube-free K, had the same effect

as including points with small denominators; for example, y2 = x3 + 47550317

has only seven points with integer x co-ordinate in the range searched, whilst
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y2 = x3− 39× 47550317 has 28, so I found the latter curve and was then led to

consider the former.

The discriminants of the curves with many integer points were in general

too large for a two-descent to finish in a reasonable length of time, whilst their

conductors were much too large for it to be feasible to compute the analytic

rank using the O(N1/2) algorithm of section 3.1.2. Instead, findinf was used

to find independent rational points of small height, and the sign of the func-

tional equation was computed; assuming the parity conjecture, this lets us know

whether findinf has missed out one point.

The sign of the functional equation was also useful in selecting where to

search; recall from figures 3.6 and 3.7 that, at least under the situation prevalent

there, the distributions of conductor with rank do not overlap much between

ranks r and r + 2. Similarly we find that, when one lists Mordell curves with

> 20 rational points and sorts by conductor, the curves of a given rank tend to

clump together, and so the sign of the functional equation tends to be constant

for long intervals. Hence, if we find a curve with ε = +1 in the middle of a

long run of ε = −1, this indicates a rank either one more or one less than the

‘expected’ rank for that conductor, so worth investigating.

The results of the search are presented as part of table 3.4.1. The largest

rank of a curve that I found was nine; Mordell curves of rank > 9 are known,

from constructions by Quer [53] and Elkies [32], but Quer’s constructions gave

substantially larger values of K at a given rank than appeared in my search.

Finding points on a Mordell curve can also be considered as a problem over a

quadratic number field – y2 = x3+K means (y−θ)(y+θ) = x3 in Q(θ) : θ2 = K;

it is this kind of argument that [49] and [53] rely on, and they find the elliptic

curves incidentally, their goal being imaginary quadratic number fields whose

class group had high 3-rank.

3.4.2 Deeper investigations with two-descents

The N values for the minimal positive and negative Mordell curves of rank six

found by the sieving process were small enough that it was feasible to perform

a two-descent on every N in the range [−1000000, 1400000], to confirm that no

other rank-six curves exist in this range. Using mwrank, with its default bounds

for point-search on the two-coverings, it took two months on three 850MHz

Athlon computers to perform the descents and obtain the results in table 3.4.

The lower bound in that table is the number of generators found for the curve:

all these generators are recorded, and the data is available on CDR by request.

To continue the exhaustive search up to the K of the rank-7 curve would

be computationally difficult, though not completely impractical – I estimate it
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Rank Smallest positive Largest negative Reference
0 1 -1 trivial
1 2 -2 long-known
2 15 -11 long-known
3 113 -174 [39]
4 2089 -2351 [39]
5 66265 -28279 [39]
6 1358556 -975379 this work

7 47550317 -56877643 this work
8 1632201497 ([32] 1999) -2520963512 (this work)
9 185418133372 -463066403167 this work
10 68513487607153 ([32] 2001) -56736325657288 ([49])
11 35470887868736225 ([32] 1999) -46111487743732324 ([53])
12 176415071705787247056 -6533891544658786928 [53]

Table 3.3: Smallest-known K with y2 = x3 +K of a given rank. For rank ≤ 6,
these are smallest-possible. If a reference is given in the “Reference” column it
applies to both entries; if by a single entry, it applies to that one only

would take three hundred 2GHz computers a year, which is not a hopelessly

large amount of computation compared with the GIMPS, Seti@Home or RC5/64

projects. Verifying rank 8 seems utterly impractical with current algorithms

and foreseeable future computers.

3.4.3 Exploring the inexact realm using four-descents

As in the caption of table 3.4, I call a curve inexact if the number of generators

found is not equal to the 2-Selmer rank. There are obviously too many inex-

act curves to perform four-descents on all of them, so I picked one thousand

examples uniformly at random from the 248, 078 curves with rank bound [0, 2].

Each example gave three quartics; if none of them gave a four-descendent we

have X[2∞] = (Z/2Z)2, and otherwise all three will give two four-descendents,

telling us that X[4] = (Z/4Z)2. In that case, I computed Xanal using the

program of section 3.1.2, allowing me to distinguish between X[2∞] = (Z/4Z)2

and X[2∞] = (Z/8Z)2 – all the analytic ranks were zero.

Sha structure With N < 0 With N > 0 Total

Z/2Z
2 391 432 823

Z/4Z
2

94 73 167

Z/8Z
2 9 1 10

These were very much not the results I expected; I had expected (Z/4Z)2

to be rare and (Z/8Z)2 vanishingly so, and I was surprised that a χ2 test on

the table gives p = 0.0042, indicating that the distribution of X structures for

Mordell curves is significantly different between positive and negative N values.

There are, of course, more positive than negative N values since the range is not
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Rank Number Number Total Proportion Proportion
bound with K > 0 with K < 0 among K > 0 among K < 0

[0] 297831 247366 545197 0.213 0.247
[1] 514000 272450 786450 0.367 0.272
[2] 208450 147632 356082 0.149 0.148
[3] 40036 26371 66407 0.0286 0.0264
[4] 3679 2547 6226 0.00263 0.00255
[5] 173 98 271 0.00012 0.00010
[6] 1 1 2 7× 10−7 10−6

inexact 335830 303535 696365 0.240 0.304
[0, 1] 141103 136452 277555 0.101 0.136
[1, 2] 9388 14018 23406 0.0067 0.014
[2, 3] 95 77 172 6.7× 10−5 7.7× 10−5

[0, 2] 127622 120456 248078 0.091 0.120
[1, 3] 52706 26639 79345 0.0376 0.0266
[2, 4] 2703 2062 4765 0.0019 0.0021
[3, 5] 46 16 62 3.2× 10−5 1.6× 10−5

[0, 3] 1203 2595 3798 0.00086 0.0026
[1, 4] 2 20 22 1.4× 10−6 2× 10−5

[0, 4] 901 1189 2090 0.00064 0.0012
[1, 5] 61 11 72 4.4× 10−5 1.1× 10−5

Table 3.4: Results of 2.4 million 2-descents on curves y2 = x3 + K, for K ∈
[−106, 1.4 × 106]. If the number of generators found is equal to the 2-Selmer
rank r2, I write [r2]; if not, I write [r1, r2] where r1 generators were found, and
call the curve inexact.
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symmetrical around zero; but restricting to |N | ≤ 106, we find an even stronger

effect (pχ2 = 0.0011):

Sha structure With N ∈ [−106, 0) With N ∈ (0, 106] Total

Z/2Z
2

391 309 700

Z/4Z
2

94 40 134

Z/8Z
2

9 1 10

Christophe Delaunay, working by analogy with the results of Cohen-Lenstra

for the class groups of quadratic fields given in [17], gave in his thesis [29]

an analytic argument that, for a curve of Mordell-Weil rank zero, X2 6= {1}
with probability 0.580577: this is entirely incompatible with my experimental

evidence. He also claimed that X[p∞] is isomorphic to (Z/p2Z)2 precisely 1/p

as often as it is isomorphic to (Z/pZ)2; this is also unsupported.

Enlivened by the above findings, I turned my attention to the curves with

2-Selmer rank 4 on which I had found either 0 or 2 generators. There are 2090

of the former type and 4765 of the latter; I picked 200 of each type uniformly

at random, calculated the quartics, and performed four-descents on all of them,

computing D
alg
4 but not calculating explicit matrices.

For the [2, 4] curves, most (502/600) of the two-coverings turned out to be

resolvable, so little local-solvability work was needed; 72 of the 98 irresolvable

two-coverings were immediately shown not to be solvable at 2. The whole

calculation took about 80 minutes, and there was not a single four-descendent

among all 600 two-coverings examined; the most time spent on one two-covering

was about five minutes, almost entirely on computing the unit group of the

number field L. Overall, 45% of time was spent on computing class groups,

40% on unit groups, 12% on calculating 2-Selmer groups in the number field,

and the rest mostly on local solvability.

For the sample of [0, 4] curves, there are of course 3000 non-trivial two-

coverings to consider, so the calculation takes a good deal longer, and we run

across situations where the class group calculation alone takes several hours.

Again, most (2372/3000) of the two-coverings were resolvable; this time, 65% of

the time was spent on class groups, 13% on unit groups, and 22% on 2-Selmer

groups. The whole run took a little under 26 hours; on seven of the curves

(three with N < 0, four with N > 0), three of the two-coverings gave eight

four-descendents each, indicating (Z/2Z)2 × (Z/4Z)2 ≤ X[2]. Analytic rank

calculations gave Xanal = 64 for all those curves.

3.5 A Mordell-like family, avoiding the origin

One can argue that Mordell curves are not good examples of random curves,

if only because they all have complex multiplication by Q[
√
−3]. Also, all my
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Selmer rank Number in Number in
bounds K0 = 314159 K0 = 3141592

0 2255 2279
1 3138 2521
2 1517 1273
3 292 255
4 24 28
5 1 2

[0, 1] 1201 1729
[1, 2] 53 146
[2, 3] 0 1
[0, 2] 1086 1258
[1, 3] 361 381
[2, 4] 29 30
[3, 5] 0 3
[0, 3] 31 79
[0, 4] 12 16
[1, 5] 1 0

Total inexact 2774 3643

Table 3.5: Results from two-descent on curves of the form y2 = x3 +17x+K0 +
N,N ∈ [−5000..5000]

experiments have suggested that the distribution of ranks and of X is not

uniform, particularly not near the origin; I wanted to construct two samples so

that I could test if the distributions observed were statistically similar.

So I considered two samples of curves of the form y2 = x3 + 17x+K0 +K

for K ∈ [−5000, 5000], with K0 = 314159 and K0 = 3141592, and performed 2-

descents with mwrank’s default bounds; for the smaller K0 a P4/2400 computer

manages approximately 90 2-descents per CPU-minute, for the larger, approx-

imately 12.5. I recorded all the everywhere-locally-solvable two-coverings on

which no global point was found, for later four-descent. The results from this

initial two-descent are presented in table 3.3.

3.5.1 Results from four-descent

For all the curves for which the 2-Selmer rank was not equal to the number

of generators found, I performed four-descents, though not all were conclusive;

thanks to time limitations, I often allowed only two minutes of CPU time per

curve, and thanks to a bug in the factorisation of polynomials over Qp for very

large p present in the version of magma I was using, sometimes the construction

of D
alg
4 failed.

Failures in D
alg
4 are not hopeless, provided that we accept the conjecture that

X is finite and therefore ‖X[2∞]‖ is a square – for example, if ‖X[2]‖ = 16,
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the possibilities for X[4] indicate that either 0, 3 or 15 of the two-coverings will

have descendents, so we can survive failures on any two.

The single curve with rank bound [2, 3] revealed its third generator upon

attack with mwrank -b14 (see appendix C; this means that the point on the

two-covering had X co-ordinate less than exp 14 ≈ 1.2×106); however, searches

with that great a näıve height bound take about five minutes per two-covering,

so are impractical for more than a few hundred curves – moreover, five minutes

is longer than the average four-descent takes.

For the smallerK0, none of the bound-[1, 5] and bound-[2, 4] curves had four-

descendents; similarly for the [3, 5] curves for the larger K0, and all but one of

its [2, 4] curves. y2 = x3 + 17x+ 3140012, sadly, has too large a conductor for

an analytic-rank computation to be reasonable.

Of the 31 [0, 3] curves for the smaller K0, points were found on eleven by

a search with -b12, and on seven more by four-descent. Five curves found a

4-descendent but no point; the remaining eight crashed magma; a deeper search

on two of the five found points. Of the 79 [0, 3] curves for the larger K0, 22

gave points after the higher-bound search, 5 found a point after four-descent,

12 found a descendent but no point, and the remaining 40 broke the machinery

enough that they found no descendent.

Of the 12 [0, 4] curves for the smaller K0, although there were crashes for

some of the two-coverings, enough survived to demonstrate that all the curves

had X[2∞] = X[2]. Of the sixteen for the larger K0, seven exhausted time

limits on more than two of the quartics, y2 = x3 + 17x + 3139145 clearly had

(Z/2Z× Z/4Z)2 ≤X[2∞], and the other eight had X[2∞] = X[2] = Z/2Z
4
.

Seven of the 372 [1, 3] curves at the smaller K0 had four-descendents (and

hence Xanal = 16), and two crashed magma. Of the 402 [1, 3] curves for the

larger K0, 14 had four-descendents and 16 crashed magma.

Of the 53 curves for the smaller K0 with bound [1, 2], points were found on

16 by mwrank -b12 ; from a four-descent carried out on the remaining 37, 13

caused internal errors, and 24 found a four-descendent and a point on it. Of

the 146 such curves for the larger K0, mwrank -b12 found points on 42, and a

four-descent found points on 37 of the remainder – 8 gave four-descendents and

no point, and the remaining 59 crashed magma. Deeper search was applied to

the four-descendents lacking a point but with coefficients all < 100, and found

points of canonical height 141.4 and 160.5.

Of the 1201 curves for the smaller K0 with bound [0, 1], 159 admitted to

a point after attack with mwrank -b11. Of the remaining 1042, after 29 hours

of calculation, 316 computed a four-descendent and found a point on it, 339

computed a four-descendent and failed to find a point, 58 ran out of time and

329 caused an internal error.

93



This calculation was performed before the implementation of the Elkies

search of section 2.9, and before a bug in the reduction code was fixed; it was

repeated afterwards for the 339 curves, with Elkies search up to |xi| ≤ 218 1 on

each of them, finding points on 97 (42 of these because the corrected reduction

gave a more reasonable four-covering on which to hunt the point), with canoni-

cal heights between 53 and 136. The four-coverings are available should anyone

want to perform burn-in tests on a large cluster of computers by performing a

much more extensive search for points on them.

Of the 1086 curves for the smaller K0 with bound [0, 2], 883 demonstrated

X[2] = X[2∞], 140 found non-trivial elements of S4 – of these 140, Xanal ≈ 16

for 130, and Xanal ≈ 64 for the rest. The remaining 63 did not complete.

Of the 1258 curves for the larger K0 with bound [0, 2], 945 had X[2] =

X[2∞], 144 found non-trivial elements of S4, and 169 did not complete.

Processing 1561 curves for the larger K0 with bound [0, 1] took 62 hours of

CPU time: 576 ran out of time, 492 caused an internal error, 304 successfully

computed a four-descendent but found no point, and 189 computed a four-

descendent and found a point on it.

The results of this computation – around three hundred P4/2400-hours in

total – are summarised in table 3.6.

3.6 How useful has four-descent been in prac-

tice?

After the substantial experience with four-descent recorded in this section, we

conclude that it is a very useful tool, though by no means perfect. The p-adic

factorisation bug in magma will be resolved in later versions, which removes the

most critical practical problem and will make four-descent a very useful tool for

curves with trivial X[2] and generators of large height.

However, it is not as useful a tool as I had hoped for curves with non-trivial

X[2] if ones goal is to find generators, since, for a generator of large height,

searches have to be conducted to substantial depth on at least ‖X[2]‖ four-

coverings in the knowledge that at most one can yield a usable result.

I was surprised to discover how common it is for X to contain elements of

order four or more – I had expected them to be rare enough that four-descent

would be sufficient for all practical purposes, whilst I have several examples

for which even eight-descent would not suffice – and interested to note that

large-order elements of X appeared significantly rarer as the rank of the curve

1this arbitrary bound was picked to require about 4 1

2
minutes per curve, so the 339 curves

would take 24 hours
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Mordell-Weil Tate-Shaferevich Number in Number in
rank group K0 = 314159 K0 = 3141592

0 trivial 2255 2279
1 trivial 3713 2878
2 trivial 1557 1355
3 trivial 292 256
4 trivial 24 28
5 trivial 1 2

∈ [0, 1] unknown 242 + 385 1 304 + 1068
∈ [1, 2] unknown 0 + 13 5 + 59
∈ [0, 2] unknown 0 + 63 0 + 169
∈ [0, 3] unknown 3 + 8 12 + 40
∈ [0, 4] unknown 0 0 + 7
∈ [1, 3] unknown 0 + 2 0 + 16

0 (Z/2Z)2 883 945
0 (Z/4Z)2 130 N/K
0 (Z/8Z)2 10 N/K
0 (Z/2Z)4 12 8
0 ≥ (Z/2Z)2 × (Z/4Z)2 0 1
0 ≥ (Z/4Z)2 0 144
1 (Z/2Z)2 371 373
1 (Z/4Z)2 7 N/K
1 (Z/2Z)4 1 0
1 ≥ (Z/4Z)2 0 14
2 (Z/2Z)2 29 29
2 ≥ (Z/4Z)2 0 1
3 (Z/2Z)2 0 3

Table 3.6: Results from 4-descents on curves of the form y2 = x3+17x+K0+N ,
N ∈ [−5000, 5000]. “x+y” in a cell means x curves where a four-descendent was
found but no point with co-ordinates all< 25000 (except for the cell marked with
1 where the search bound was 218), and y where the four-descent software failed
to complete in two minutes. The distinction between (Z/4Z)2 and (Z/8Z)2 is
made by examining L(E,1); it is not made for the larger K0 since the analytic
rank computations take too long, hence the ≥ (Z/4Z)2 rows. Mordell-Weil
ranks are precisely the number of generators found.
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increased.

Class- and unit-group calculations are nearly always very efficient, but there

still exist bad examples, and of course these appear as significant obstructions

when doing long unattended runs; magma takes more than six hours to find the

class group of Q(θ) where −11θ4−12θ3−228θ2+1944θ+924 = 0. It may be that

these bad examples could be detected more quickly given access to the internals

of the ClassGroup routine, but at present they show up at random and make

it impossible to predict how long a four-descent on a given two-covering might

take; the timings can vary enormously even among the different two-coverings

of a single elliptic curve.

I am slightly surprised at how great the height of a generator on a rank-one

elliptic curve can become: I have several examples where a search up to N = 107

on the single four-descendent of a curve with Selmer rank one failed to find the

point, which would suggest that the canonical height of the generator exceeds

150. The Elkies search parallelises perfectly, so a search up to N = 109, h ≈ 200

is reasonable over a fortnight on a single fast computer or a weekend on a small

cluster; but I doubt one will often want to devote that much computation to a

single curve. Lang [48] conjectures, by bounding one by one the terms in the

Tate–Shaferevich formula for the regulator, that in the rank-one case

|X|R = o(max(a
1/4
4 , a

1/6
6 ) logNN c1(log N log log N)−1/2

),

and if this is true there may be many curves for which the generator P has h(P )

large enough that any method taking time O(αh(P )) is hopeless.

At rank one, the method of Heegner points comes to the rescue, taking as

it does time polynomial in N and h(P ) to find a generator; indeed, they have

already proven essential for the computation of generators for many of the curves

in Cremona’s tables [20]. But there is no known analogue of Heegner points at

ranks above one.

3.7 An unexpected lack of independence

I noticed that, in computing several hundred analytic X values for the above

work, I had never observed one not a power of two. This led me to wonder

whether 2| ‖X‖ and 3| ‖X‖ were in fact independent events, and to be fairly

certain that the P (3| ‖X‖) ≈ 0.361 from [29] is wrong. Looking at the 98, 616

curves of N < 15000 in [20], we see 4, 310 with Xanal > 1; considering small

primes, we find
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p Number of times p|Xanal Proportion

2 3316 0.03363

3 860 0.00872

5 116 0.00118

7 28 0.00028

11 4 0.00004

13 1 0.00001

Fitting a curve suggests that P (p|Xanal) ≈ p−4, and a χ2 test on the table

2 6 |Xanal 2|Xanal

3 6 |Xanal 94453 3303

3|Xanal 847 13

indicates that the events 2|Xanal and 3|Xanal are not independent with p =

0.002.

Of course, the frequency of 2|Xanal in the above table is much lower than

the 14% or so observed in table 3.5: perhaps this is because the curves of small

conductor include a much higher proportion with non-trivial torsion.
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Chapter 4

Invariant-theory-based

2-descent over Z[i]

Over Z, the classical 2-descent algorithm, due to Birch and Swinnerton-Dyer

and substantially refined over many years by Cremona, relies on bounds for the

coefficients of a reduced quartic polynomial with given I and J invariants. In

that context, a quartic is reduced iff an associated covariant positive definite

quadratic form is reduced, which happens iff a point in the upper half-plane H2

associated with the form lies in a specific fundamental region: we pull back the

equations defining the region to get the coefficient bounds.

There are approaches, dating back to Hermite and Julia and carried through

by Cremona and Stoll [70], which produce a similar form of reduction algorithm

for curves with coefficients in C; this work describes the approach from a very

computational point of view, and constructs the bounds on the coefficients of

a reduced quartic with coefficients in Z[i] and given I and J invariants, or of a

reduced cubic with coefficients in Z[i] and given discriminant.

4.1 The model – reduction of positive definite

quadratic forms

This is very standard material, but I go through it absolutely explicitly since

almost every step is followed in the Hermitian case.

We find an SL2(R)-contravariant map φ from the set of positive definite

binary quadratic forms to H2, and define a positive definite quadratic form as

reduced iff its associated point in H2 is reduced. To define reduction on H2,

we find a fundamental region – a connected subset of H2 containing precisely

one point from each orbit of SL2(Z) – and let the reduced form z′ of a point
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z be the representative point for the orbit SL2(Z) · z. Given a quadratic form

t, let z = φ(t), and reduce z by finding M to satisfy Mz = z′. Since φ is a

contravariant map, M · φ(t) = φ(M−1t), so we can use M−1t as the reduced

form of t.

Specifically, if we write (a, b, c) for the positive definite quadratic form

F (x, y) = ax2 + bxy + cy2, a, b, c ∈ R

with discriminant ∆(F ) = b2 − 4ac (since F is positive definite, ∆(F ) < 0)

we can define φ(F ) =
√

∆−b
2a (the root of F (x, 1) = 0 in the upper half-plane):

∆ < 0 so
√

∆ can be taken with strictly-positive imaginary part.

SL2(R) acts on quadratic forms by change of variable:

(

a b

c d

)

·







A

B

C







T

=







a2A+ acB + c2C

2abA+ (ad+ bc)B + 2cdC

b2A+ bdB + d2C







T

and also on points in H2 by Möbius transforms :

(

a b

c d

)

· z =
az + b

cz + d
,

(

a b

c d

)

· x+ iy =
ac(x2 + y2) + (ad+ bc)x+ bd + iy

(cx)2 + (cy + d)2

and we have, as desired, the result

Theorem 4.1.1. φ(M · F ) = M−1 · φ(F ) ∀M ∈ SL2(R).

whose proof is standard.

Next, we obtain a fundamental region. SL2(Z) is generated by S =

(

1 1

0 1

)

and T =

(

0 1

−1 0

)

. The actions of the generators on H2 are given by S(z) =

z + 1 and T (z) = −z−1. Let

R0 =

{

z ∈ H2 : <z ∈
(

−1

2
,
1

2

]}

;

clearly a suitable power of S will translate any point of H2 into R0. Considering

the action of T then leads us to consider

R1 =
{

z ∈ H2 : <z ∈ (−1/2, 1/2], |z|> 1
}
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and

R2 =
{

z ∈ H2 : |z| = 1, 0 ≤ <z ≤ 1/2
}

R = R1 ∪ R2 will be a fundamental region. We add also the two omitted edge

points i and 1
2 (1 +

√
−3), fixed points of T and of TS respectively.

The shape of the fundamental region leads us immediately to

Lemma 4.1.1. Given any positive definite binary quadratic form F , there is

an equivalent form F ′ such that the real part of φ(F ′) lies in (−1/2, 1/2] and

the imaginary part is greater than
√

3/4.

Examining the definition of φ gives us

Lemma 4.1.2. Given any positive definite binary quadratic form F of deter-

minant ∆ < 0, there is an equivalent form F ′ = (A′, B′, C ′) with |B′| ≤ A′ and

3A′2 ≤ −∆

and as an immediate consequence

Lemma 4.1.3. Given a determinant ∆ < 0, there are only finitely many in-

equivalent positive definite binary quadratic forms with integer coefficients and

that determinant

Proof. Any form with that determinant must be equivalent to one with 1 ≤
A ≤

√

|∆|/3 and B ∈ [−A,A], and there are only finitely many forms with

those coefficient bounds. Every (A,B) in that set satisfying (B2 + ∆) = 4AC

for integral C gives such a form, and they are pairwise inequivalent since they

correspond to distinct points in R.

This result can be very much extended; Birch and Merriman in [4] show

that, for any number field K, there are only finitely many equivalence classes

under the action of SL2(OK) of binary forms with coefficients from OK and a

given degree and discriminant.

4.2 Hermitian forms: definitions, group actions

and contravariant maps

Definition 4.2.1. A Hermitian form is a function C2 → R, given by four real

parameters a,<b,=b, c: we write

F (z1, z2) = az1z1 + bz1z2 + bz1z2 + cz2z2

for a, b, c ∈ C, but you will note that, to guarantee F (z1, z2) ∈ R, a and c must

be real. We will abbreviate the above F as [a, b, c]; for convenience of notation,

we will call the set of Hermitian forms H.
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Definition 4.2.2. The discriminant of the Hermitian form [a, b, c] is ∆ = bb−ac,
a real number. A positive definite Hermitian form is one for which F (z1, z2) ≥ 0

with equality only at z1 = z2 = 0; this requires ∆ < 0 and a, c > 0. Let H+ be

the set of positive definite Hermitian forms.

Definition 4.2.3. Upper half-space, H3, is defined by H3 = C× R+; we write

a point p ∈ H3 as p = (z, t) where z ∈ C and t ∈ R>0.

It has been known since the work of Hermite in the nineteenth century that

SL2(C) has an action on H3; it can be derived in several ways, but it’s easiest

to note that this action is precisely what is required to make a natural map

constructed later contravariant.

Definition 4.2.4. Let g =

(

a b

c d

)

∈ SL2(C). If we define

g · (z, t) =

(

(az + b)(cz + d) + act2

|cz + d|2 + |ct|2 ,
t

|cz + d|2 + |ct|2
)

then we have a left action of SL2(C) on H3: we can check that M1 · (M2 ·H) =

(M1M2) ·H for M1,M2 ∈ SL2(C), and, since the denominator |cz + d|2 + |ct|2
is positive, the sign of t′ in (z′, t′) = g · (z, t) will be the same as the sign of t.

We also have a natural change-of-variables action of GL2(C) on H by

(

α β

γ δ

)

· F (z1, z2) = F (αz1 + βz2, γz1 + δz2).

In our triplet notation for elements of H, this gives us

Lemma 4.2.1. The element

M =

(

α β

γ δ

)

∈ GL2(C)

sends the Hermitian form H = [a, b, c] to H ′ = [a′, b′, c′] with

a′ = α(aα + bγ) + γ(bα+ cγ)

b′ = α(aβ + bδ) + γ(bβ + cδ)

c′ = β(aβ + bδ) + δ(bβ + cδ)

with discH ′ = | detM |2 discH . This is a right action of GL2(C) on H: (A ·
M1) ·M2 = A ·M1M2. And it sends positive definite Hermitian forms to positive

definite Hermitian forms, since a′ = H(α, γ), c′ = H(β, δ) (so they are positive

if H was positive definite) and the sign of the discriminant remains unchanged.

101



Definition 4.2.5. Let ψ be the map H+ → H3 given as

ψ([a, b, c]) =

(

− b
a
,

√
−∆

a

)

.

Observe that, if (z, t) = ψ([a, b, c]), we have |z|2 + |t|2 = c
a .

We know that this maps into the upper half-plane since ∆ < 0 and a > 0 for

positive definite Hermitian forms. Whilst it discards too much information to

be a bijection, it is certainly surjective on the region |z| > t since ψ([1,−z, zz−
t2]) = (z, t).

Moreover, we have, and this is the justification for defining the action of

SL2(C) on H3 above, that

ψ(H ·M) = M−1 · ψ(M);

the verification is straightforward by working symbolically in

C(α, β, γ, δ,
√
−∆, a, b, c, α, β, γ, δ, b)

and using the identities detM = detM = 1 and
√
−∆

2
= ac − bb. Since the

latter identity is required, the result does not hold for H not positive definite;

but since it is obtained symbolically it holds for all M ∈ SL2(C).

4.3 Bounds on reduced Hermitian positive def-

inite quadratic forms

We next need fundamental regions for SL2(OK), which I give for Z[i] and

Z[
√
−2]. A paper of Swan [72] gives generators and fundamental regions for

a number of imaginary quadratic number fields, including some with class num-

ber not 1. Let

T =

(

1 1

0 1

)

, S =

(

0 −1

1 0

)

be the generators for SL2(Z); S has order 4 and TS has order 6.

Lemma 4.3.1. SL2(Z[i]) is generated by S, T , and also

Ti =

(

1 i

0 1

)

, K =

(

−i 0

0 i

)

.

K,KT,KS,KTi, TiK and TK all have order 4.
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Lemma 4.3.2. SL2(Z[
√
−2]) is generated by S, T and T2 =

(

1
√
−2

0 1

)

.

The following table gives the actions of the five generators mentioned above

on H3 and on H+: they are all self-explanatory except for the operation of S on

H3, which corresponds to inversion in a hemisphere of radius 1 centred at the

origin.

Generator Action on [a, b, c] ∈ H+ Action on (z, t) ∈ H3

T [a, a+ b, a+ b+ b+ c] (z + 1, t)

Ti

[

a, b− ia, a+ i(b− b) + c
]

(z + i, t)

T2

[

a, b−
√
−2a, a+

√
−2(b− b) + c

]

(z +
√
−2, t)

K [a,−b, c] (−z, t)
S [c,−b, a] (− z

|z|2+|t|2 ,
t

|z|2+|t|2 )

For SL2(Z[i]), it is clear that actions by suitable powers of T and Ti can

send any point in H3 to lie in the prism

P1 =

{

(z, t) ∈ H3 : −1

2
≤ =z < 1

2
,−1

2
≤ <z < 1

2

}

.

The action of K rotates this prism 180◦ around the axis passing through z = 0,

so we can replace P2 with the half-prism

P2 =

{

(z, t) ∈ H3 : −1

2
≤ =z < 0,−1

2
≤ <z < 1

2

}

.

Following the model of section 4.1, we now consider the action of S. This

interchanges the regions R1 : |z|2 + |t|2 < 1 and R2 : |z|2 + |t|2 > 1; the interior

of our fundamental domain will be P2 ∩ R2.

We also need to get the boundaries of the fundamental region correct; at

the moment we have that the plane =z = − 1
2 is fixed by T−1

i K (which acts on

this plane by negating the real part), and the plane <z = − 1
2 is fixed by T−1K,

whilst the line z = 0 is fixed by K. Decompose the plane =z = − 1
2 into R7∪R8,

where

R7 =

{

(z, t) ∈ H3 : =z = −1

2
,<z < 0

}

and R8 is its complement. However, we want the line L : z = − 1
2 − 1

2 i to lie in

the fundamental domain even though it lies in R7 which we will be excluding.

On the region R3 : |z|2 + |t|2 = 1, S acts by (z, t)→ (−z, t); we decompose

103



R3 as R4 ∪R5{a,b,c} ∪R6, where

R4 =
{

(z, t) ∈ H3 : <z < 0, |z|2 + |t|2 = 1
}

R5a =
{

(z, t) ∈ H3 : <z = 0,=z > 0, |z|2 + |t|2 = 1
}

R5b =
{

(z, t) ∈ H3 : <z = 0,=z < 0, |z|2 + |t|2 = 1
}

R5c = {(0, 1)}
R6 =

{

(z, t) ∈ H3 : <z > 0, |z|2 + |t|2 = 1
}

S interchanges R4 and R6 and R5a and R5b, whilst leaving R5c (the single

point (0, 1) corresponding to multiples of the form |x|2 + |y|2) fixed; SK acts as

the identity on the whole of R3. So we define

Fi = (R5c ∪ R5b ∪ (P2 ∩ (R2 ∪R6)) \R7) ∪ L.

For Z[
√
−2], the calculation is similar though less convoluted; define the

prism

P√
−2 :

{

(z, t) ∈ H3 : −1

2
≤ <z < 1

2
,−
√

2

2
≤ =z <

√
2

2

}

into which any point of H3 may be moved by a unique element of T ′ = 〈T, T2〉,
and once again the interior of the fundamental domain is P√

−2 ∩ R2. We do

not have the confounding element K, so our contribution from the region R3

can be R6 ∪ R5b ∪R5c as before but without having to intersect with P2:

F√
−2 = (P√

−2 ∩R2) ∪ R6 ∪ R5b ∪R5c.

The perils of finite precision

Our fundamental regions are hyperbolic polyhedra with some faces open and

some closed; we have some elements which act trivially on codimension-1 or

greater subspaces of H3. There will always be trouble in checking whether an

element of H3 given with finite precision lands in one of these infinitely-thin

spaces, and, whilst we do not make actually-transcendental extensions at any

point in this chapter, it is as yet impractical to work in Q: we have to use finite

precision.

The problem crops up most obviously when we work with Hermitian forms

with rational coefficients, and in that case we try to work in H+ as much as

we can, since the only precision loss comes from calculating the square root in

the ψ map of definition 4.2.5. This means we have to translate the equations

describing our fundamental domain in H3 into restrictions in H+.

Let F = [A,Br + iBi, C] be a Hermitian form with coefficients in Q[i].
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<z = − 1
2 means A = −2Br, =z = − 1

2 means A = −2Bi. The region P1 has

(Br, Bi) ∈ ([−A/2, A/2))
2
, R3 has A = C, R1 has A > C and R2 has A < C.

R4 and R6 are Br < 0 and Br > 0 respectively, whilst the fine separation of R5

into R5a, R5b, R5c comes from Br = 0 and Bi > 0, Bi < 0, Bi = 0.

4.3.1 Bounds on A,B,C for ψ([A,B,C]) ∈ F

Throughout P2, we have |z|2 ≤ 1
2 , and throughout R2∪R3 we have |z|2+|t|2 ≥ 1;

so |t|2 ≥ 1
2 in Fi; for F√

2, we have |z|2 ≤ 3
4 in P√

2, and so |t|2 ≥ 1
4 . Call this

lower bound tmax in what follows.

By definition, |t|2 = −∆
A2 ; so |t|2 ≥ tmax =⇒ A2 ≤ −t−1

max∆. A is positive

and, since ∆ < 0 and BB > 0, we cannot have A = 0, so 1 ≤ A ≤
√

−t−1
max∆.

But, if we know A and we know that ψ([A,B,C]) ∈ P2, we have −A
2 ≤

<B < A
2 and −A

2 ≤ =B < 0, or, if we know ψ([A,B,C]) ∈ P√
−2, −A

2 ≤
√

1
2=B < A

2 – so we have a finite number of choices for A and B, and, just

as in section 4.1, we have shown that there are only finitely many SL2(Z[i])-

or SL2(Z[
√
−2])-inequivalent positive definite Hermitian quadratic forms with

a given discriminant and coefficients from any discrete subset of C desired.

4.3.2 Computing the reduced form of an H.p.d.q.f.

Write a ≈ b if |a − b| < 10−20; with the standard precisions in magma, this is

a reasonable bound to give for floating-point precision. We use three-valued

indicator variables, for “inside”, “outside” and “on boundary”.

Consider a point P = (z, t) ∈ H3, and define S(P ) = |z|2 + |t|2.

• If S(P ) ≈ 1, set Ps = 2; otherwise, if S(P ) < 1 set Ps = 0 and otherwise

set Ps = 1.

• If <z ≈ −0.5, set Pr = 2; otherwise, if <z < −0.5 or <z ≥ 0.5, set Pr = 0,

and otherwise Pr = 1.

• If =z ≈ 0 or =z ≈ −0.5, set Pi = 2; otherwise, set Pi = 1 unless =z > 0

or =z < −0.5.

• If any of Pi, Pr or Ps is zero, P is outside Fi.

• If Ps = 2, Pr 6= 2 and <z < 0, we are in region R4, so P is outside Fi.

• If <z ≈ 0.5, we are outside P1, so P is outside Fi.

• If Pi = 2, Pr 6= 2 and <z < 0, we are in the region R7, so P is outside Fi.

• Otherwise, P lies in Fi.
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To move a point into Fi, follow the following procedure (this is pseudo-code,

so you update z at each stage and use the value from the last stage rather than

the value at the beginning of the loop) until the algorithm above tells you the

point is in Fi:

• Let P = b<z + 1
2c+ ib=z + 1

2c, and, if P is non-zero, subtract P from z;

this is an action by T−<PT−=P
i .

• If =z > 0 then negate z by acting by K.

• If =z ≈ 0 and <z < 0 then we are in the region R5a; replace z by −<z
(this sets =z to exactly zero, which helps maintain precision), and record

an action by K.

• If =z ≈ −0.5 and <z < 0 then we are in the region R7; replace z by −z
to negate the real part, and record an action by T−1

i K.

• If <z ≈ 0.5 then set z = −0.5 + i=z and record an action by T−1.

• If <z ≈ −0.5 then set z = −0.5 + i=z; this simply deals with precision

loss

• If S((z, t)) < 1, or if S((z, t)) ≈ 1,<z < 0 and z 6= −0.5 – that is, if we

are in R2 ∪ R4 – act on Z by S.

It is clear that, if this algorithm terminates, it will do so with [A,B,C] cor-

responding to a point in the fundamental region. Since we perform a meaningful

action by T only when |z|2 + |t|2 < 1 – on R4 the action of T is simply to negate

the real part – and, in that case, the action of T increases t, we have a quantity

growing larger at every step through the loop.

In fact, if we worked in H+ rather than H3, the procedure above performs

the Euclidean algorithm on A and C: the action of S−1, S−1
i replace C by C −

A,C− iA respectively, and the action of T swaps A and C. Since the Euclidean

algorithm terminates after O(log(max |A|, |C|)) division steps, the reduction

procedure above terminates after O(log(max |A|, |C|)) applications of T . Since

only finitely many other transformations occur between each application of T ,

the procedure is finite.

4.4 SL2(OK)-reducing higher-degree forms with

complex coefficients

Let

f(x) =
n
∑

i=0

aix
i = an

n
∏

i=1

(x− αi)
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be a polynomial with coefficients ai and roots αi lying in C. Cremona’s paper

[23] handles the case where ai ∈ R and n = 3, 4; his joint paper [70] with Stoll

proves, amongst other things,

Theorem 4.4.1. Let C[X,Z]n denote the set of binary degree-n forms with

coefficients from C. With any form Q(X,Z) we can associate a Hermitian form

fQ(X,Z) =

n
∑

j=1

|X − αjZ|2
|Q′(αj)|e

where the exponent is given as e = 2/(n−2), and hence a point ϕ(Q) = ψ(fQ) ∈
H3 where ψ is the map from Hermitian forms to H3 given in definition 4.2.5. For

n = 3, 4, this map Q→ ϕ(Q) is the unique covariant map C[X,Z]n → H3.

Given this covariant map, we define a polynomial as reduced over an imagi-

nary quadratic number field K iff its associated point in H3 lies in F(SL2(OK)),

and obtain a reduction f1 = M−1 · f where M · ψ(f) ∈ FOK .

4.4.1 Bounding coefficients for reduced polynomials

The aim of this section is to show

Theorem 4.4.2. For a polynomial Q of degree n, with leading coefficient a,

constant term z and discriminant ∆, the XX and Y Y coefficients of the Stoll

covariant fQ are bounded in terms of |a|, |z| and |∆|.

Proof. Let the roots of Q be α1 . . . αn, and consider the Hermitian form fQ

defined in theorem 4.4.1; we can write

fQ = r0XX + r1XY + r1XY + r2Y Y

with

r0 =

n
∑

i=1

|Q′(αi)|−2/n−2, r2 =

n
∑

i=1

|αi|2|Q′(αi)|−2/n−2.

Let e be the exponent −2
n−2 , and f = 2n−2 be the power of the leading coefficient

which appears when you expand the discriminant of Q as ∆ = afΨ with Ψ =
∏

1≤i<j≤n(αi − αj)
2.

Expanding by the product rule, Q′(αi) = a
∏

1≤j≤n,j 6=i αi − αj , so r0 is a

sum of n positive terms with product

P =

n
∏

i=1



|a|
∏

1≤j≤n,j 6=i

|αi − αj |





e

.
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A given term |αk − αl| will appear precisely n− 2 times in this product, being

omitted only in Q′(αk) and Q′(αl); the aggregate power of |a| is just ne, and so

we get P = |a|ne|Ψ|−1. Obviously, we compare with |∆|−1 = |a|−fΨ−1 to get

P = |a|ne+f |∆|−1.

Now, applying the arithmetic-geometric mean inequality

n
∑

i=1

xi ≥ n
(

n
∏

i=1

xi

)1/n

we get r0 ≥ n|∆|−1/n|a|f/n+e. For the r2 term, the product is increased by a

factor |∏αi|2, which by the standard symmetric-polynomials argument is just

| za |2, and so we have r2 ≥ n|∆|−1/n|a|e+f/n| za |2/n.

In the cubic case, n = 3, e = −2, f = 4, and

r0 ≥ 3|∆|−1/3|a|−2/3;

for quartics, n = 4, e = −1, f = 6, and

r0 ≥ 4|∆|−1/4|a|1/2.

4.5 Explicit bounds on the leading coefficient,

in the cubic and quartic cases

4.5.1 Cubics

From the arguments of section 4.4.1, we have that, for a cubic Q(x, y) = ax3 +

bx2y + cxy2 + dy3 with roots α1, α2, α3, the modified Stoll covariant |∆|fQ =

[r0, r1, r2] has r0 ≥ 3|a|2/3|∆|1/3 and r2 ≥ 3|d|2/3|∆|1/3. 1

This result gives us a bound on the leading coefficient of a reduced cubic.

For, if |∆|fQ(x, y) is reduced, its covariant point in H3 will have t co-ordinate

not less than some (positive) constant tmin dependent only on the field we are

reducing over. From section 4.2.5, this t co-ordinate is given as
√

−∆f/r0,

where ∆f = r0r2 − |r1|2 is the discriminant of |∆|fQ. Multiplying out, we

discover that −∆f = 3|∆|, so we have
√

3|∆| ≥ tminr0.

Substituting in the bound for r0 above, we find

31/2|∆|1/2 ≥ 3tmin|a|2/3|∆|1/3.

1A similar lower bound for r1 is not available; if α2 = ωα1 and α3 = ω2α1 for ω =
exp (2πi/3) (ie the roots are arranged in an equilateral triangle), then r1 = 0. But we know
r1 once we know r0, r2,∆.
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Dividing both sides by 3tmin|∆|1/3, we find

|a|2/3 ≤ 3−1/2t−1
min|∆|1/6;

both sides are positive, so we can raise to the power 3/2 to obtain

|a| ≤ 3−3/4t
−3/2
min |∆|1/4.

For the Z[i] case, where tmin = 2−1/2, this bound is (2/3)3/4; if we were reducing

real cubics over SL2(Z), we would have tmin = 4/3
−1/2

since the fundamental

region in H2 has a higher lowest point, and would get |a| ≤ 2
√

2
3
√

3
, the coefficient

obtained on p.72 of [23].

Now, we use the uniqueness of the covariant for cubics. By the classical

covariant theory from [23], any cubic Q has a cubic covariant g3(Q), with leading

coefficient U = 2b3 + 27a2d − 9abc and discriminant 729∆3. Now, g3(Q) will

have a Stoll covariant point ψ(g3(Q)). But this will be a covariant point of Q

(since covariants of covariants are covariant), and therefore will just be ψ(Q).

So, if Q is reduced, ψ(Q) must be reduced, and by the argument above we have

|U | ≤ 33/4t
−3/2
min |∆|3/4 (where the 33/4 arises as 3−3/4 × 7291/4).

If we know a, U,∆, we essentially know all about the cubic, because we can

get the other seminvariant P = b2 − 3ac from the syzygy 4P 3 = U2 + 27∆a2;

we have ∆ fixed, we can search over the regions found above for U and a, and

check whether the syzygy’s result is four times a cube of an element of the search

space – there is clearly potential for a two-dimensional sieve approach at this

stage.

Once we have a value of P from the syzygy, we can pick b = 0, solve (trivially)

P = b2− 3ac and U = 2b3 + 27a2d− 9abc to get c and d (rejecting values which

do not fall in the right regions of search space), and reduce the resultant cubic,

knowing that picking b corresponded only to a translation of the cubic.

Hence we have an algorithm for finding all equivalence classes of cubics

with coefficients from any discrete subset of C and a given discriminant, the

equivalence classes being defined under the action of SL2(Z[i]) or SL2(Z[
√
−2]).

4.5.2 Quartics

The arguments here are very similar, though complicated by the fact that the

discriminant of fQ is not uniquely determined by knowing |∆| (which we might

have expected, since quartics have two invariants).
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However, we get from [70] that

∆f =
∑

1≤j<k≤4

‖αj − αk‖2 tjtk

with tj = ‖Q′(αj)‖−1
(the version in [70] has an additional constant factor 4

because they define r1 differently). This is a sum of six positive terms, and,

proceeding in the same way as in section 4.4.1, we find that their product

is |a|−12|Ψ|−2 (each term contributes |a|−2 from the two tk components, the

|αj − αk|2 gives one |Ψ|, and in the
∏

1≤j<k≤4 tjtk we have each |αi − αj |−1

appearing six times for a total |Ψ|−3).

Fortuitously, |a|−12|Ψ|−2 = ∆−2; we apply the AGM to get |∆|f ≥ 6|∆|−1/3,

and the arguments of section 4.4.1 then give r0 ≥ 4|∆|−1/4|a|1/2.

Applying
√

∆f ≥ tminr0, we then have |a| ≤ 3/8t−2
min|∆|1/6. In the Z[i] case,

the constant here is 3
4 .

And this is in fact enough; quartics have a quartic covariant g4 with leading

coefficient−H = 3b2−8ac and discriminant 4096J2∆ (where J is the J-invariant

of the original quartic). By the same uniqueness argument as in the cubic case,

g4 is reduced iff the original quartic is, so we get a bound on H as |H | ≤
3/2|J |1/3t−2

min|∆|1/6.

And so we have finite search regions for a and H , whilst we know I and J

by hypothesis. Again, we have a seminvariant syzygy H3 − 48Ia2H + 64Ja3 =

−27R2, so we look over a and H values to find things which are −27 times a

square; at this point we know R. We can take b = 0, solve for c from a and H ,

note that R = b3+8a2d−4abc and solve for d, and find e from I = 12ae−3bd+c2.

4.6 Applications to descent

As in the rational case, this reduction theory is essential in theory for the two-

descent based on invariant theory, and useful in practice for the two-descent

based on algebraic number theory: Simon [66] can now use the latter technique

to perform two-descents over number fields fairly efficiently, and obtain a com-

plete set of two-coverings representing all the elements of the 2-Selmer group.

However, there is no reason for these two-coverings to have pleasant coefficients,

and an application of reduction can make the coefficients much more manage-

able – after all, we know the invariants of the associated quartics, and have

absolute bounds for the sizes of the coefficients of a quartic with given invari-

ants. However, I have not found an example where searching for rational points

on a two-covering is the limiting factor for Simon’s two-descent.

Using the very precise enumeration in Serf’s thesis [58] of the possibilities for
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the I and J invariants of a minimal quartic over a quadratic number field, we can

find up to four (I, J) pairs which together cover all the reduced minimal quartics

that could appear in a two-covering for a given elliptic curve. The technique

of section 4.5.2 will find all the Z[i]- or Z[
√
−2]-reduced minimal quartics with

each of the invariants; chapter 2.2 of [58] contains an algorithm for checking local

solvability of the associated two-coverings, and a clever argument of Cremona in

[22] allows you to check equivalence between pairs of two-coverings by looking

at the factorisation of various polynomials over the number field.

Combining all of these, we end up with a single representative for each non-

trivial element of S2(E(K)). We finish in the same way as the direct 2-descent

over Q, by searching for points on each of these representatives.

Searching for points on a two-covering over a number field is not a well-

studied task at the moment; the best techniques I am aware of use quadratic

sieves at primes with degree-1 residue fields to accelerate the evaluation and

checking for squareness of

f(z−1
∑

xiθ
i)

for a range of integral xi and z, and θ a basis of OK . It may turn out worthwhile

instead to write the [K : Q] simultaneous equations in 2 [K : Q] + 2 unknowns

with integral coefficients, corresponding to

z−1
1

(

∑

yiθ
i
)2

= z−1
2 f

(

∑

xiθ
i
)

,

and use a variation on [33].
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Chapter 5

Directions for further work

The implementations of four-descent and L-function derivatives described in

this thesis will be incorporated into a release of magma to appear sometime after

September 2003, along with a routine for finding generators for curves with

analytic rank 1 and small conductor using Heegner points; that routine was

almost entirely developed by Cremona, and accordingly is not discussed here.

The construction of D
alg
4 extends to number fields immediately, and an im-

plementation, using the same sorts of relative-extension work as used in Simon

[66], would not be too difficult. The minimisation will be fairly similar, at least

at degree-one unramified primes: Serf’s extension in chapter five of [58] of the

minimisation of quartic forms over quadratic fields is the model to follow, and

the method based on Fp[x, y] appears to extend immediately. It is not, however,

clear how to extend reduction, or how to work with primes where the residue

field is not Fp.

Naturally, any improvement in the computation of class and unit groups

for general number fields will make the computation of D
alg
4 easier; however,

unless you are checking that ‖X[4]‖ = ‖X[2]‖ for long lists of curves, and so

almost never generating explicit elements, the lion’s share of the calculation

time is taken by Stoll reductions; this is because those are calculated by default

at a very high precision since the current implementation is not robust against

precision loss. This effect is worst when the generators of the unit group have

very large coefficients with respect to an integral basis, since these will lead

to similarly-complicated elements of L′(S, 2) which require significant reduction

effect to come down to single-digit coefficients.

The present implementation feels very inefficient in the fairly common case

where X[2] is non-empty, and we have found g generators for the Mordell-Weil

group and believe there is one missing. The set of non-trivial elements of the

2-Selmer group is of size 2g+s+1 − 1; taking a quotient by the part generated
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by the known generators gives 2s+1 − 1 individual two-coverings for the four-

descent. In the best case, where X[4] = X[2], we only find four-descendents on

one of them – but we find 2g+s+1 four-descendents, and, while only one of these

can have an interesting rational point, we have to check all of them to find it.

It may be that only a further descent could resolve this issue.

It would be interesting to find a non-experimental way of determining the

resolvability of a two-covering; this would lead to a novel definition of “reduced”

for two-coverings, namely replacement with an equivalent two-covering with

smallest possible
∥

∥

∥D
alg
4

∥

∥

∥, which is more relevant for the four-descent than the

classical reduction of binary quartic forms.

It is possible to search for Qp-points on the two-coverings that generate the

local image more efficiently than I do at the moment.

Whilst it is not clear how to extend the ecsieve algorithm to handle curves

y2 + xy + y = f(x), it is trivially possible to use it for curves in obviously non-

minimal models – arbitrary values of a2, for instance. I did not do this in the

work to date because it was not obvious to me what range of a2 values it would

be sensible to use, other than the {−1, 0, 1} which provide possibly-minimal

models.

The techniques of chapter four were carried out over real quadratic number

fields by Serf in [58]. For more general number fields K, the natural space in

which to find covariant points is (H2)r ⊗ (H3)s where r and s are the number of

real and complex embeddings of K, and it is not clear what the correct analogue

of the fundamental region would be: for real quadratic fields, the bound obtained

was on the product of the imaginary parts of the embeddings.

What is clear is that even four-descent is not a complete solution to the hunt

for generators for elliptic curves: whilst it opens up the previously-inaccessible

range of heights between about 70 and about 150, it would appear, from the

existence of curves with small a4 and a6, Selmer rank one, and a single four-

descendent, with small coefficients, on which there is no point with coordinates

< 107, that a reasonable fraction of curves have generators of even greater

heights. I suspect that deeper descent will in practice provide a better attack

on these curves than the method of Heegner points offers, even though the

asymptotics would seem to be in the latter method’s favour; I do not know how

third and subsequent two-descents will be performed, but I am sure that some

day I will read a paper performing them.
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Appendix A

Invariants and covariants of

a binary quartic form

A binary quartic form f(x, y) = ax4 + bx3y + cx2y2 + dxy3 + ey4 has (see for

example [42]) the two invariants

I = 12ae− 3bd+ c2

and

J = 72ace+ 9bcd− 27ad2 − 27eb2 − 2c3.

An argument involving generating functions shows that any other invariant will

be an isobaric polynomial in I and J ; in particular, the discriminant of the

quartic is ∆ = 1
27

(

4I3 − J2
)

.

As well as these two degree-zero invariants, we have degree-four and degree-

six algebraic covariants

g4 = (3b2−8ac)x4+4(bc−6ad)x3+2(2c2−24ae−3bd)x2+4(cd−6be)x+(3d2−8ce)

g6 = (b3 + 8a2d− 4abc)x6 + 2(16a2e+ 2abd− 4ac2 + b2c)x5

+ 5(8abe+ b2d− 4acd)x4 + 20(b2e− ad2)x3 − 5(8ade+ bd24bce)x2

− 2(16ae2 + 2bde− 4c2e+ cd2)x− (d3 + 8be2 − 4cde)

Writing Q(x) = f(x, 1), we find that the covariants are related by the syzygy

27g2
6 = g3

4 − 48IQ2g4 − 64JQ3;
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rearranging, we find that, if (x, y) satisfies y2 = Q(x), the point

(t, u) =

(

3g4(x)

4y2
,
27g6(x)

8y3

)

lies on the elliptic curve u2 = t3 − 27It − 27J . This is the two-covering map

ξ : C → E used in section 2.2.3.

The leading coefficients of the g4 and g6 covariants are called the H and

R seminvariants respectively; there is also a Q seminvariant equal to 1
3 (H2 −

16a2I). These seminvariants are relevant for finding the number of real roots of

a quartic polynomial, and for constructing the covariant binary quadratic form

used for reducing quartic polynomials (and hence two-coverings) over SL2(Z).

A.1 The map θP : C → E

Let C be a curve y2 = f(x) with f quartic, and let P = (X,Y ) lie on C. Translate

to make the X co-ordinate of P zero, giving a curve

C′ : y2 = ax4 + bx3 + cx2 + dx+ q2.

Then, following [18], the map

u = x−2(2q(y + q) + dx)

v = x−3(4q2(y + q) + 2q(dx+ cx2)− d2x2/2q)

takes (x, y) ∈ C to (u, v) on the elliptic curve

v2 +
d

q
uv + 2bqv = u3 +

(

c− d2

4q2

)

u2 − 4q2u+ a(d2 − 4q2c).
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Appendix B

The invariant map up from

a four-covering

This appendix presents material from [51].

Let H = (M1,M2) be a four-covering expressed as a pair of 4× 4 matrices;

let x = (x1 : x2 : x3 : x4) be the vector of homogeneous co-ordinates, and p be

a point with pMip
T = 0. Let f1 and f2 be the quaternary quadratic functions

fi(x) = xMix
T.

Consider the quartic polynomial Q = det(M1 − λM2) (which defines the

sigma invariants by det(M1 − λM2) =
∑5

i=1 σiλ
i−1), and the two adjoint ma-

trices ri = adjMi.

Consider also the double-adjoint matrix R = adj (xr1 + r2), which is 4 × 4

with its entries cubic quadratic polynomials; decompose it as

R = R3x
3 +R2x2 +R1x+R0

with Ri ∈ GL4(Z), and compute the quadratic functions d1(x) = σ−1
1 xR1x

T

and d2(x) = σ−1
5 xR2x

T.

The fifth invariant of the pair of quadrics is G, a quartic function of the xi

equal to one sixteenth of the determinant of the 4× 4 Jacobian matrix













∂d1

∂x1

∂d1

∂x2

∂d1

∂x3

∂d1

∂x4

∂d2

∂x1

∂d2

∂x2

∂d2

∂x3

∂d2

∂x4

∂f1

∂x1

∂f1

∂x2

∂f1

∂x3

∂f1

∂x4

∂f2

∂x1

∂f2

∂x2

∂f2

∂x3

∂f2

∂x4













.

With these rather cumbersome definitions, we have, for

x = −d1(p)/d2(p), y = G(p)/d2(p)2,
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that Q(x) = y2.

B.1 Following the maps down

For debugging purposes and the generation of test data, it is useful, given an

elliptic curve E, a point P on the curve, and a four-covering H, to construct a

point R ∈ H whose image on E is P . As always in this kind of work, we go via

a point Q on an intermediate two-covering T .

Recall from appendix B that, if we have Y 2 = f(X) for some X and Y , and

f some quartic polynomial, and we consider the invariants I , J , g4 and g6 of the

quartic, we find that 3g4(X)/4Y 2 is the X coordinate of a point on the elliptic

curve y2 = x3 − 27Ix− 27J .

This is fairly easily reversible; suppose we have f and a point (x, y) on

the attached elliptic curve. Then, for (X,Y ) to lift to (x, y), we must have

Y 2 = f(X) and 4xY 2 = 3g4(X); substituting, X must be a rational root of

4xf(t)− 3g4(t) = 0.

The four inverse images on the two-covering of a point on the elliptic curve

will, by construction, differ by a 2-torsion point; if we assume that the elliptic

curve was without 2-torsion, which is credible because we’d not be using the

general two-descent on a curve with 2-torsion, the polynomial above has at most

one rational root.

Suppose next that we have a four-covering, of the form q1(x) = q2(x) = 0,

and a rational point p lying on it. From the previous part, we have an associated

quartic Q :
∑5

i=1 σiλ
i−1, a pair of functions d1(x) = σ−1

1 xR1x
T and d2(x) =

σ−1
5 xR2x

T, with X = −d1(p)/d2(p) being the X co-ordinate of a point on Q.

Reversing this construction gives us three quadratic equations in four ho-

mogenous variables:

q1(p) =0 (e1)

q2(p) =0 (e2)

d1(p) +Xd2(p) =0 (e3)

To solve such a set of equations, we compute resultants in all possible permu-

tations:

R123 := Res(e1, e2; z)

R124 := Res(e1, e2; t)

R233 := Res(e2, e3; z)

R234 := Res(e2, e3; t).

117



Now, we can take

ey :=Res(R123, R233; t)

et :=Res(R123, R233; y) and

ez :=Res(R124, R234; y)

to get homogenous degree-sixteen equations in x and y, z and t respectively; we

homogenise by setting x = 1, and solve the equation to find the possible y, z or

t-coordinates for points on H.

Note that the only input we have here is the X co-ordinate of the point on

the two-covering; to check that we have lifted Q = (X,Y ) rather than −Q =

(X,−Y ), we take the candidate point p ∈ H and check that the sign of G(p)

(where G is the Jacobian determinant defined in the previous part) is equal to

the sign of Y .
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Appendix C

Computer programs used in

and developed during this

work

The four-descent software developed during this work runs under the computer

algebra package magma [7], developed by Cannon et al at the University of Syd-

ney. For ease-of-interfacing reasons, and because its algorithms for counting

points on elliptic curves are very substantially quicker for small p (because

magma’s compute extra data for the curve over Fp), some of the large computa-

tions and all work on analytic ranks were performed using pari [2] instead.

For performing two-descents, I used Cremona’s mwrank [19]. To search for

points on curves y2 = f(x), I use Cremona’s findinf, which is a small wrap-

per around the ratpoint routine, which was based on code of Elkies and later

refined and improved by Stoll and Stahlke – mwrank has this functionality in-

corporated. The only configuration option I used for mwrank was the -b setting,

which controls the näıve height up to which points are searched for on the two-

coverings; -bN corresponds to an x and y co-ordinate of absolute value ≤ expN ,

for which there are exp 3
2N possibilities – experiment suggests that the search

takes time roughly proportional to exp 1.8N , with a very small constant factor

thanks to the efficiency of the sieves used: for N = 13, the computer I use

requires about 20 seconds per curve.

The current version of the four-descent software can be obtained from

http://tom.womack.net/d4.tar.gz

as a collection of magma package files; decompress this file into an appropriate

directory with the tar zxf command, and after issuing the command
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AttachSpec(‘‘d4spec.spec’’);

d4([a,b,c,d,e]) will perform a four-descent on the two-covering y2 = ax4 +

bx3 + cx2 + dx + e, producing a set of minimised, reduced four-descendents.

ElkiesSearch4(dd, limit) will search for a point on the four-covering dd with
∑

x2
i < 4limit2, and FourDescendentAscent(dd, point) will give the point

on the associated elliptic curve corresponding to the point point on the four-

covering dd. A cleaner version of this functionality should be integrated into a

version of magma released sometime after September 2003, probably invisible

to the user but accelerating the MordellWeilGroup command substantially.

C.1 Sample data sets

Various people provided data sets which were useful in the development of this

software. When I needed two-coverings known to represent elements of X[2], I

applied mwrank to the curves marked as rank zero with #X[2] = 4 in Cremona’s

tables of curves with N ≤ 12000.
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